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Abstract 

Competing risks frequently arise in medical applications when the subject under study 

may fail from more than one cause. Typically, regression models for competing risks 

are based on cause-specific hazards. However, the cause-specific hazard does not have 

a direct interpretation in terms of survival probability of a particular failure type. In 

recent years, many researchers have begun using the cumulative incidence function, 

i.e., the marginal failure probability of a particular cause, to model competing risks. 

In the literature several methods have been suggested for direct regression mod­

eling of the cumulative incidence function, such as Fine and Gray (1999), Klein and 

Andersen (2005) and Scheike and Zhang (2008). Fine and Gray's and Scheike and 

Zhang's methods require estimating the censoring distribution; hence, their perfor­

mance is highly sensitive to how well the censoring distribution can be estimated. 

Although Klein and Andersen (2005) avoid estimating the censoring distribution by 

using pseudo-values, their method suffers from a loss in efficiency. 

We propose an iterative maximum likelihood method to directly model the cumu­

lative incidence function in the first part of this thesis. It involves iterating between 

two steps: the first step estimates the baseline subdistribution hazards using the 

current estimate of the regression coefficients; the second step updates the estimate 

of the coefficients by maximizing the log-likelihood with the baseline hazards fixed. 

We derive its asymptotic normality and illustrate the method on a real dataset to 

compare the risks of relapse and death in remission after bone marrow transplants 

IV 
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from different types of donors. Simulation studies show that our method outperforms 

the methods of Fine and Gray (1999) and Klein and Andersen (2005). 

Competing risks also arise in mortgage data, which involves two mutually exclu­

sive endpoints, prepayment and default. Many U.S. mortgages issued in recent years 

were made to subprime borrowers. As the house prices began to decline in mid 2006, 

subprime mortgage delinquencies soared, which made subprime-mortgage-backed se­

curities almost worthless and led to a global credit crunch. A quantitative model 

to accurately predict the mortgage prepayment and default rates based on the loan 

level information and the state of the economy is therefore very important for both 

risk management and pricing mortgage-backed securities. In the second part of this 

thesis, we propose a neural network model to model the prepayment and default 

probabilities. We apply the model to a large dataset consisting of subprime loans 

originated from 2004 to 2006. Our analysis shows that the neural network model 

has better performance than the multilogit regression model for predicting mortgage 

prepayment and default rates. 
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Chapter 1 

Introduction 

1.1 Competing Risks: Cause-specific Hazard vs 

Cumulative Incidence Function 

Problems involving competing risks are common in medical applications. In such 

problems there are K competing causes of failure that may occur. The occurrence 

of failure from one cause precludes that due to other causes. One observes for each 

subject a failure time and a cause of failure. An example of competing risk data is the 

study of different causes of death. Another example, which is quite common in cancer 

studies, involves relapse of the cancer as one competing risk and death in remission as 

another competing risk. For example, after bone marrow transplantations, patients 

may either die from treatment-related toxicity or relapse into leukemia. Interest is 

often in estimating the probability of occurrence of the competing risks, comparing 

these probabilities between treatment groups and modeling the effects of covariates 

on the probability of occurrence of the competing risks. 

Competing risks are typically represented by a set of positive random variables 

Xi,... ,XK, where Xj is the potential (unobservable) time to failure from the j th 

2 
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cause. We observe T° = min(X1 , . . . , XK) and an indicator J which tells the cause 

of failure, J = j if T° = X,-. 

A basic quantity of interest in competing risk data is the cause-specific hazard 

rate \j(t), also known as the crude hazard rate. It is the instantaneous probability 

of occurrence of failure from the jth. cause in the presence of all causes of failure: 

_ P(t<X,<t + A\T>t) 

The cause-specific hazard rate can be computed from the joint survival function of 

the X's, G(xi,... ,XK) = P(Xi < xi,... ,XK < xK), as 

dlogG(xi,...,xK) 
\j(t) = x— -, at xi = ... = xK = t. (1.2) 

When the potential failure times are independent, the cause-specific hazard rates 

are the same as the marginal hazard rates of the X/s, which are defined as 

lim —P(t <Xj<t + A\Xj > t). 

However, this is in general not true if the potential failure times are dependent. As 

Cox (1959) and Tsiatis (1975) pointed out, it is also not possible to identify from 

competing risk data whether the X's are independent because for every dependent 

system of X's there is an independent set of random variables which have the same 

cause-specific hazard rates. This independent system of risks, however, has different 

marginal distributions from the original dependent set of variables. 

Another quantity to summarize competing risk data is the cumulative incidence 

function (CIF), i.e., Fj(t) — P(T° < t,J — j). It can be computed as a function of 
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all K cause-specific hazards by 

Fj(t) = f A j ^ e x p ( - I ^Xh{v)dv j du. (1.3) 

The cumulative incidence function represents the chance of failure from the j th cause 

in a world where individuals can fail from any of the causes. It is a subdistribution 

function with -Fj(oo) — P(J = j), and depends on the cause-specific hazards of all 

risks. 

An alternative formulation of competing risks uses a multistate model, as discussed 

in Andersen et al. (1992). It does not require the construction of potential failure 

times for each cause of failure. There are K+1 states a subject may be in at any point 

in time, denoted as state 0 to state K. State 0 is the transient state that the subject 

is alive. The other K states are absorbing states, each representing death from a 

given cause. The cause-specific hazard Xj(t) is the transition intensity from state 0 

to state j , while the cumulative incidence function Fj(t) is the transition probability 

from state 0 to state j , i.e., POJ(0, t) = P( in state j at time t\ in state 0 at time 0). 

If interest is in estimating and modeling the cause-specific hazard rates, failure 

from any cause other than the cause of interest can be treated as a censored obser­

vation. The usual Nelson-Aalen estimator can be applied to estimate the cumulative 

cause-specific hazard. Weighted log rank tests can be used to compare two or more 

groups. Regression analysis can also be performed under a proportional hazards 

assumption (Larson 1984; Prentice et al. 1978) or under Aalen's (1989) additive haz­

ards model. Standard techniques suffice to fit the models, as the competing risks 

formulation does not add any additional complexity to the analysis. 

While these methods are easy to apply using standard software, they are not mod­

eling quantities of direct interest. Unlike survival data without competing risks, the 

exponential of the negative of the cumulative cause-specific hazard is a meaningless 
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quantity. Differences in the cause-specific hazards for particular risks do not trans­

late directly into differences between the cumulative incidence functions. Although 

it is possible to obtain an estimate of the cumulative incidence function by combin­

ing estimates from a regression model of all the cause-specific hazards and plugging 

the hazards into (1.3), the resulting regression model for the CIF is a complicated 

nonlinear function of the covariates and is difficult to interpret. 

Many authors have noted that the effects of covariates on the cumulative inci­

dence function may be very different from those on the corresponding cause-specific 

hazard function. Furthermore, the cumulative incidence function is intuitively more 

appealing and well suited to graphical display. Therefore, it is of interest to develop 

regression techniques which allow for direct inference about the effects of covariates 

on the cumulative incidence function. 

1.2 Direct Modeling of the Cumulative Incidence 

Function 

In what follows, we use C, to denote the censoring time, Tj = min(7f, Cj) to denote the 

observed event or censoring time. Let A* be the indicator of censoring, A* = I(r°<d)-

Nij(i) is the counting process of the ith. subject associated with failure from the j th 

cause, Nij = I(Ti < t, A, = 1, Jj = j). N.i(t) = X^iVti(*) is the number of failures 

from the jth cause before time t. Zi is a p x 1 vector of covariates. Without loss of 

generality, we assume interest is in modeling the cumulative incidence function of the 

first cause of failure Fi(t). 

Previous work on the cumulative incidence function includes Aalen and Johansen 

(1978) and Aalen (1978), who proposed an efficient nonparametric estimate of the 

cumulative incidence function based on the transition intensities from a multistate 
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model (also see Andersen et al. 2003, pages 296-297): 

m~IU.I ™~)"^w- ( ' 
where Y(t) is the number at risk at time t. Gray (1988) and Pepe (1991) developed 

tests for equality of the CIFs across treatment groups. Their methods are useful but 

restricted to data with discrete covariates. 

Recently some work has been done on direct regression modeling of the cumulative 

incidence function. Most of this work assumes semi-parametric models, one baseline 

for each risk. The difficulty of estimating the semi-parametric models when the 

data are censored is that the parametric and nonparametric parameters have to be 

estimated simultaneously, since the partial likelihood principle no longer works in 

this case. The existing methods basically fall into two categories depending on how 

censored data is handled. Methods in the first category, such as Fine and Gray (1999), 

Fine (2001) and Scheike and Zhang (2008), use the inverse probability of censoring 

weighting (IPCW) technique (Robins and Rotnitzky 1992) to get around censored 

data. An alternative way to handle censored data, proposed by Klein and Andersen 

(2005), is based on jack-knife pseudo-values of the nonparametric estimate of the 

cumulative incidence function. In what follows we summarize these methods which 

model the CIF directly. 

1.2.1 Proportional Subdistribution Hazard Model 

Fine and Gray (1999) proposed a proportional subdistribution hazard model and 

extended the partial likelihood principle to competing risk data by modifying the risk 
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sets. The subdistribution hazard is defined as 

aiit) - i^w (L5) 

Under the proportional hazards assumption, 

ai(t; Z) = aw(t) exp(ZT(t)P). (1.6) 

If the censoring times Cj's are known, in the absence of covariates it can be estimated 

by 

0 1 ( 0 ~ Eii(ci>t,Nil(t) = oy (L7) 

It is easy to show that 1 — exp(— fQ ai(s)ds) is asymptotically equivalent to the 

nonparametric maximum likelihood estimate of Fi(t) given in (1.4). 

The risk set at time t 

Y,I(Ci>t,Na(t) = Q) (1.8) 
i 

includes two distinct groups, the subjects who have not failed from any cause prior to 

time t and the subjects who have failed previously from other competing causes and 

are not censored at time t. If the censoring times are unknown, a subject who failed 

prior to time t due to other competing risks is weighted by «;$(£), the probability that 

it is not censored at time t given that it was not censored at the failure time Tf. 

Wi(t) = G{t)/G(TiAt), (1.9) 

where G(t) is the Kaplan-Meier estimate of P(C > t). 

The unconventional risk set (1.8) leads to a partial likelihood for the subdistri­

bution function F\(t;Z). Estimates of the regression coefficients can be obtained by 
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solving the estimating equation: 

~tJo \ £ ; ^(5)^1(5) exp(Z/(s)/3) J 

(1.10) 

where Ya(t) = (1 - Na(t))I(Ci > T? A t). 

1.2 .2 R a n k - B a s e d L e a s t S q u a r e s R e g r e s s i o n 

Fine (2001) proposed a semi-parametric transformation model of the CIF for time-

independent covariates. Estimation of the regression coefficients is achieved with a 

rank-based least square criterion based on the correlated Bernoulli variables Uy = 

7{min(27,*o) > T*}, 1 < %± j < n, where T* = T° x I(Jt = 1) + oo x I(Jt ^ 1). 

£0 < oo is chosen so that P(min(T°, C) > t0) > 0. 

Since T? is unknown for censored data, the IPCW technique is again adapted to 

adjust for missing data. Define 

sUj = /(minpC^o) > Xj,Jj = l J A ^ G ^ . ^ G ^ . Z , - ) ) - 1 , 

S2,a = I(k > Xj > Xu Jj = 1,4? l ^ A ^ G p Q , ZJGiXj, Zj))~\ 

where G(t, Z) is an estimate of the censoring distribution conditioned on the covari­

ates. Let Uij = Si^j + s2,ij, it is easy to see that Uy is unbiased for u^ conditional on 

the covairates. 

Assume the existence of a known, differentiable function <?(•), such that 

g(F1(t;Z))^h(t)-ZTf3. 

h(t) determines the baseline failure probability when Z — 0; it is unspecified, invert-

ible and strictly increasing in t. Possible choices of g(-) are g(x) = log(x/(l — x)) 
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and g(x) — log(—log(l — x)). The conditional expectation of Uij is rjij(a,(3) = 

/ ^ ( l — g~l(t — Zj0))dg~l(t — Zj/3) evaluated at the true values a = h(to) and /3. 

A reasonable estimate of 9 = (a, ft) is the minimizer of the squared error criterion 

Q{&) = Y^i^ji^ij ~ Vij(8))2- A weighted version of the squared error criterion is also 

considered. 

1.2.3 Direct Binomial Regression 

A direct binomial regression method to model the CIF has been proposed in Scheike 

and Zhang (2008). G?J7 is unbiased for Fi(t,Zi) conditional on the covariate Zi, 

sincG 

E (W)\z)=f '-WG(s)iFi{s-Zt)=F,(('zd-
^ l , therefore, can be used as the response in a generalized estimating equation. 

Suppose Fi(t, Zi) is modeled with a link function and a parameter vector 77,77 can be 

estimated by finding the zero of the score function 

where Wi(t) is the weight and Di(t,r](t)) is the derivative of Fi(t, Zi) with respect to 

77 at time t. 

1.2.4 Pseudo-value Approach 

Another recent method for direct regression of the CIF is the pseudo-value approach 

proposed by Klein and Andersen (2005). It is based on jackknife pseudo-values con­

structed from the Aalen-Johansen (AJ) nonparametric estimate (1.4). For a fixed 

grid of time points TI, . . . , TM, the jackknife pseudo-value for the ith subject at time 
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Th is 

Oih = n A f a ) - (n - l ^ f V / O , 1 < ^ < M, (1.11) 

where FI(T/J) is the A J estimator based on the complete data set and F^ (77,) is the 

estimator based on the sample of size n — 1 leaving out the ith. subject. 

When there is no censoring, 

0i = (On, • • •, #ijvf) = (^(^i < Ti, Jj = 1 ) , . . . , /(Tj < rM , Ji = 1)) • 

Under independent right censoring, the AJ estimator can be expressed in terms of 

influence curves as in van der Laan and Robins (2003): 

F,(t) ~F1(t) = -J2 IC(TU \ , Ji-1) + op(n-1'2). 
8 = 1 

Graw et al. (2008) have shown that 

6ih = IC(Th Ah Ju 7k) + Fi(Tfc) + op(n-1'2). 

Therefore the pseudo-values d^s are approximately independent and asymptotically 

unbiased for the cumulative incidence function conditioned on the covariates. 

These pseudo-values are used in a generalized linear model to model the effects 

of covariates. Let g(-) be a link function; possible choices are the logit link g(x) = 

\og(x/(l—x)), or the complementary log-log link g(x) — log(— log(l—x)), which gives 

the proportional hazards representation as in Fine and Gray (1999). We assume 

g(0ih) = ah + Zj1 = Zjhf3, i = l,...,n, h = l,...,M. 
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Define the inverse link by 

9ih = g-\Zlf3) = n{Zlf3). 

Since pseudo-values for the same subject at different time points are correlated, 

the generalized estimating equation approach of Liang and Zeger (1986) is applied to 

estimate /?. Let 6i = (9n,..., 9IM)T, d/j,i(p) be the (M + p) x M matrix of partial 

derivatives of 8i with respect to the parameters, Vi(j3) be a working covariance matrix. 

The estimating equations to be solved are 

U(/3) = y£idm(J3)Vi-
1(/3)0i-ei). (1.12) 

i 

Klein and Andersen (2005) suggested three possible choices of the working covari­

ance matrix: the identity matrix, an "exact" working covariance matrix computed by 

the covariance between Bernoulli variables, and the usual sample covariance matrix 

of the pseudo-values. They "found no systematic differences between different choices 

of working GEE covariance" and "recommend that the simple independence working 

covariance matrix be used". 

1.3 Outline 

The methods that use the inverse probability of censoring weighting technique all 

require estimating the censoring distribution. Their performance is very sensitive 

to how well the censoring distribution can be estimated. Although the pseudo-value 

approach does not require estimating the censoring distribution, the pseudo-values for 

the same subject at different time points are highly correlated. Hence the generalized 

estimating equation approach is inefficient in this case; see Lai and Small (2007). 

To get an efficient estimate and avoid estimating the censoring distribution, we 
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propose to maximize the likelihood iteratively. We assume a proportional subdistri-

bution hazard model as in Fine and Gray (1999). The algorithm consists of iter­

ating between two steps. The first step is to estimate the baseline subdistribution 

hazards by the Nelson-Aalen type estimates assuming the regression parameters are 

known; the second step is to update the regression parameters by maximizing the 

log-likelihood with the baseline hazards fixed. 

In Chapter 2, we describe the algorithm and its relationship to the Cox propor­

tional hazards model for survival data without competing risks. In Chapter 3, using 

similar techniques as in Lai and Ying (1988, 1991), we express the estimate as the 

solution to a system of estimating equations and derive its asymptotic normality. Sim­

ulation studies comparing the suggested iterative maximum likelihood method with 

the methods of Fine and Gray (1999) and Klein and Andersen (2005) are presented 

in Chapter 4. In Chapter 5, the iterative maximum likelihood method is applied 

to analyze data from a bone marrow transplantation study using different types of 

donors. In Chapter 6, we summarize the merits of the suggested iterative maximum 

likelihood method. 
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Chapter 2 

Iterative Maximum Likelihood 

Method 

2.1 Model and Algorithm 

Let T° and C be the failure time and the censoring time, J G (1,...,K) be the 

cause of failure. Without loss of generality, we assume there are two causes of failure, 

i.e. K = 2. Z is a p x 1 vector of covariates. The algorithm and proof in this 

chapter and Chapter 3 are not restricted to time-independent covariates, but for 

simplicity of notation, we assume Z to be independent on t. In section 3.5, we briefly 

discuss how to extend the method to situations with time-varying covariates. Under 

independent right censoring, T = min(T°, C), A = I(T°<C), observe {Tj, A*, A,Jj, Zt} 

for i = 1 , . . . ,n. Our interest is in modeling the cumulative incidence functions for 

the two causes of failure conditioned on the covariates, i.e., Fj(t, Z) = P(T° <t,J = 

j\Z),j = 1,2. 

We assume a proportional subdistribution hazard model with different regression 

parameters and baselines for different causes of failure. The cumulative incidence 

13 
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functions are modelled as 

Fj(t, Z) = l - exp(- exp(ZTpj)Aj(t)),j = 1,2, (2.1) 

where Aj(t),j = 1,2 are nonparametric baselines, j3j,j — 1,2 are p x 1 regression 

coefficients. For convenience, we use bold letters to denote vectors which concatenate 

the corresponding quantities of the two risks; for example, /3 = (0[, 0^)T is a 2p x 1 

vector representing the regression parameters in the two competing risks. Assuming 

A(0>i = l>2 are absolutely continuous with dAj(t) = a,j(t)dt, the likelihood of the 

data on the interval [0, r] under independent right censoring is 

I I I I dA*(t)dNil(t)d\i2(t)
dN^ exp(-A i l(r) - A i2(r)), (2.2) 

i t 

where Nij(t) = I(Ti<t,Ai=iJi=j) 1S ^e counting process of the ith subject associated 

with failures from cause j , Ajj(t) is its compensator, Yi(s) = I(Ti>s), 

_ Yj(t)(l - FfaZMexpiZfPAajWdt 
dAij[t) l-F1{t,Zi)-F2(t,Zi) 

When there is censored data, the partial likelihood principle is no longer applicable. 

We suggest to maximize the likelihood in an iterative way which consists of two steps. 

The first step is to estimate the baselines using Nelson-Aalen type estimates, 

assuming the regression coefficients are known. If the regression coefficients are b = 

(6f,6^)T, Aj(t) is estimated by Anj(t,b),j = 1,2. 

UtM=f^fMA (,3) 
Jo bnj{s-,b) 

where 

s„j{,-,b) - ± y-(s)l' - ^ - . W l - r i f f l , (2.4) 
JV t r i - F „ i ( » - , b , Z , ) - F „ 2 ( « - , b , 2 ( ) 
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Fnj(s,b,Zi) = l-exp(-exp(Zlbj)Anj(s,b)), j = 1,2. (2.5) 

The second step is to update estimates of the regression coefficients by maximiz­

ing the log-likelihood with the baselines fixed. The new estimates of the regression 

coefficients b = (bj, b%)T are 

(bi,b2) = a r g m a x 5 ^ ^ / ( A i = 1 , J i = : , ) ( Z f 6 j - exp(Z[bj)Anj(Ti-)) 
61,62 i j = 1 

- Y, W D l o g(! - Fm(Ti} b, Zt) - Fn2{Tu b, Zi)) (2.6) 

y ^ y > E,-(l ~ Fnj(t, b, Zj)) expjZfb^dAnjjt, b) 

i t<Ti 1 ~ Fni{t, b , Zi) — Fn2(t, b , Zi) 

Anj(t, b) are held to be constant in the above equation. Up to first order, 

* .(I - F~Jt. b. ZA) exu(ZTbAdA\jt. b) 
rflog(l - Fnl(t, b, Zi) - Fn2(t, b, Zi)). 

E,-(l ~ Fnj(t, b, Zj)) expjZTbJdAnjit, b) 

(2.7) 
l-Fnl(t,b,Zi)-Fn2(t,b,Zi) 

Hence the last term in (2.6) is up to first order equal to 

^2log(l - Fnl(Ti, b, Zi) - Fn2(Ti, b, Zi)). (2.8) 
i 

Thus (2.6) is up to first order equal to 

(bub2) = a r g m a x ^ ^ / ( A i = M i = J ) ( Z f 6 j - exp(Zf&J)l„J(T i-)) 
61,62 i j = l 

+ J2 7(Ai=o) log(l - Fnl(Ti, b, Zi) - Fn2(Ti, b, Zi)). (2.9) 

However, the first-order approximation in (2.9) leads to a much poorer performance 

in our simulation studies than (2.6); hence, the method is implemented with the 
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likelihood represented in (2.6). 

(2.6) can also be written as a stochastic integral: 

(61,ft2) = a r g m a x ^ J ] / log(dAy(i))<W«(0 - / dA^t), (2.10) 

where 

YK*)(1 - £,,-(*, b, ZQ) expjZ^dAnjit, b) 
dAijtJl(t, b) = 

l - F I l l ( t , b , Z i ) - F n 2 ( t , b J Z i ) 

l - F n i ^ b . Z O - F ^ b . Z , ) ' 
(2.11) 

The final estimates of the regression coefficients and baselines are obtained after 

iterating between these two steps until convergence. In the absence of covariates, it 

is easy to show that the Nelson-Aalen type estimate is asymptotically equivalent to 

the nonparametric maximum likelihood estimate of the baseline. Therefore, the final 

estimates of the regression coefficients and baselines fully maximize the log-likelihood. 

Next we will express the final estimate of the coefficients as a solution to a sys­

tem of estimating equations, which is the basis of the argument in Chapter 3. If 

Anj(t, b),j = 1,2 are taken to be constant when taking derivatives with regard to b, 

define 

rjij,n{t, b) = — \ogdAij<n(t, b) 

= Zi-Zi eMzIbM^t, b) + ( 1 " ^ b 'Zi)) «P(ff*j)^(*. b) 
3 J l - F B l ( t , b , Z i ) - F n a ( < , b , Z < ) 
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<j>ij,n(t, b) = — log rfAy/in(t, b) 

(1 - Fnj(t, b, Zi)) expiZTb^ZiA^, b)^ 

l - F n x ^ b . Z O - F ^ b . Z i ) 

where 

1, J = 2, 

2, j = l. 

The estimate of the coefficients f3n — (p£i,p%2)T solves the following estimating 

equations, j = 1,2 

^ ( b ) = ^ / rjijAtMidNijit) - dAij&b)) 

+Y, f fe»(*' b)(d%'(*) - ^M*.b))> (2-14) 

2.2 Relationship to the Cox Regression in Survival 

Data Without Competing Risks 

If there is only one cause of failure, the iterative maximum likelihood method solves 

the same estimating equation as the Cox regression. The Cox regression solves the 

following estimating equation (see Andersen et al. 1992, page 486): 

U(b) = J2 [iH*) ~ E(t,b))dNi(t), (2.15) 
i Jo 

where 

Ei^Wexp(Zf(t)6)Fi(t) E(t,b) = ZieMzrwrnt) 
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Since ^ Zi(t) exp(Z?\t)b)Yi(t) = E(t, b) £ \ exp(Z?(t)b)Yi(t), the score function (2.15) 

can be reexpressed as 

U(b) = V f\Zi(t) - E(t, b))(dNi(t) - exptfitWYiWdAit, b)), (2.16) 

where A(t,b) is the Nelson-Aalen estimate of the baseline defined by 

Prom the fact that X^<^i( s) = Ylieyiv{Zj{t)b)Yi{s)dA{s,b), the score function 

(2.16) can be simplified as 

U(b) = V f Zi(t)(dNi(t) - exp(ZT(t)b)Yi(t)dA(t, b)). (2.17) 
i Jo 

This is the same as the score function (2.14) of the iterative maximum likelihood 

method if there is no competing risk. Therefore the suggested iterative maximum 

likelihood method can be considered as an extension of the Cox regression to situations 

where the estimation of the regression parameters and nonparametric baselines cannot 

be separated. 
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Chapter 3 

Asymptotic Normality 

In this chapter we derive the asymptotic normality of /3n . For simplicity, we only 

consider data observed in a finite time interval [0, r] and estimates in a small neigh­

borhood of the true parameters {b : |b — f3\ < p}. The technical assumptions made 

in this chapter are collected and given below for easy reference: 

A 1. \Zi\ < B for all i and some nonrandom constant B, 

A 2. The limits in (3.11) and (3.12) exist in probability, hence S°(t) andhj(t, b, Ax, A2), 

j = 1,2, 0 < t < r are well defined. 

A 3. hj(t, b, Ax, A2), 7 = 1,2, 0 < i < r are bounded away from zero. 

A 4. l/hj(t, b, Ai, A2), J'[ — 1,2, 0 < t < r, are Lipschitz continuous in A\ and A%. 

A 5. l/hj(t, b,Ai,A2), j = 1,2, 0 < t < T, are continuously differentiable in b, Ai 

and A2. 

A 6. The limits defined in (3.36) exist in probability. 

A 7. The limits defined in (3.37)-(3.45) exist in probability. 

A 8. S defined in (3.36) is nonsingular. 

19 
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1 — Fni(t,b, Zi) — Fn2(t, b, Zi) frequently appears in the denominators in (2.4), 

(2.12) and (2.13). To bound it away from zero without losing efficiency, we apply 

similar techniques in Lai and Ying (1988, 1991) and introduce a smooth weight func­

tion of the form 

pn{x)=p{na{x-cnTa)), (3.1) 

with c > 0, 0 < a < 1, and p being a twice-continuously differentiable and nonde-

creasing function on the real line such that 

p(u) = 0 for u < 0, p(u) = 1 for u > 1. (3.2) 

The idea is to multiply 1/(1 — Fnl(t, b, Zi) — Fn2(t, b, Zt)) by a smooth weight func­

tion 

Pn(t,b,Zi) = ^ ( l - M t . b . Z O - P n a f t b . Z O ) 

1 if 1 - Fnl(t, b, Zt) - Fn2{t, b, Zi) > (c + l)n~a, 

0 if 1 - Fnl{t, b, Zi) - Fn2(t, b, Zi) < cn-a. 
(3.3) 

For simplicity of notation, also define 

Pn(t, b, Zi) = pn{\ - Fi(t, b, Zi) - F2(t, b, Zi)), (3.4) 

pn(t, Zi) = pn(l - Fi(«, Zi) - F2(t, Zi)), (3.5) 

where F will be defined in (3.13). The following modifications are made to (2.3), 

(2.4), (2.12) and (2.13). 

Anj(t 
./o 

£iPnQs- , b, Zi)dNjj{s) 

Snj(s-,b) 
(3.6) 
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(̂.-.b) = tfi.(.-.b,^»^fcJh^p^M, (3.7) 
*-{ l-Fnl(s-,b,Zi)-Fn2(s-,b,Zi) 

%i,n{t,b) = pn(t,b,Zi) [Zt - Ziexp(Zfbj)Anj(t,b) 

+ (1 - Fnj(t, b, ZAyexpffibjZiAnjjt, b)\ 

l-Fnl(t,b,Zi)-Frt(t,b,Zi) / ' 

-7 (t h) ... Pn(t,b,Zi)(l~Fnj(t,b,Zi))exp(Zj'bj)ZiAnj(t,b) 

1 - Fnl(t, b, Z^ - Fn2(t, b,Zt) 

Let Un(b) = (C^i(b),C/J2(b))T, we establish in section 3.1 the asymptotic equiv­

alent of Un(b) and consistency of (3n. In section 3.2, we establish the asymptotic 

linearity of Un(b) in some neighborhood of (3. In section 3.3, the asymptotic normal­

ity of Un{(3) is derived. Finally in section 3.4, we derive the asymptotic normality of 

3»-

n 
3.1 Consistency of j3r 

Approximate Ai(t, b) with a nonrandom function A\{t, b), which is defined as 

S°{s)ai(s)ds 

where 

^ r afrfrMg _ 

Jo hl(s,b,Al(s,b),A2(s,b)) 

»->«"JY \ - bi{t,Zi) - b2\t,Zi) 

lim I y- &(*, b, Z,)*ffl(l - £(*, b, z)) exp(Zf h) 
" - ° « Y 1 - F i ( « , b , z ) - F 2 ( * , b , z ) 
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Fj(s, b, z) = 1 - exp ( - exp(zTbj)Aj(s, b)), j = 1,2. (3.13) 

In similar fashion we define A2: 

Mt,b)=['—m*m—. (3.i4) 
Jo h2(s,b,A1(s,b),A2(s,b)) 

Under assumption A4, l/hj(s, b,Ai,A2), j = 1,2 are Lipschitz continuous in 

Ai and A2. By Picard's Existence Theorem (Coddington and Levinson 1955), the 

solution to the integral equations (3.10) and (3.14) exists and is unique. Thus 

Aj(t, b),j = 1,2 are well denned. In this subsection, for simplicity of notation, 

we denote hj(t,b, Ai(t,b), A2(t,b)) by hj(t,b). 

Lemma 3.1. Under assumptions A1-A4, for a < 1/6 and pn such that 

sup \pn(t, b,z) - pn(t,/3, z)\ = 0{n-1'2), (3.15) 
O<t<T,\b-0\<p„,z 

the following holds 

sup \Anj{t,b)-Aj(t,b)\ = 0P(n-1/2), i = 1,2. (3.16) 
0<t<-r,|b-/3|<p„ 

Proof. The proof is based on mathematical induction. Chop the interval [0, r] into 

0 = to < t\... < tm = T which is fine enough so that for 1 < k < m, 

sup |/M(S, b) - /n(s', b)| = 0(ra-1/2), (3.17) 
s,«'e(tfc-i,tfc],|b-,8|<p„ 

sup \pn{s,z)-pn(s',z)\=0(n-1/2), (3.18) 
s,s'e(t*-i,tfc],« 
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and the counting processes Nij(t), 1 < i < n,j = 1,2 have no jump within the 

subintervals (tk-i,tk), k = 1 , . . . , m. Jumps can only occur on the endpoints of the 

subintervals. 

Suppose 

sup \Anj(t,b) -Aj(t,b)\=Op{n-1!2), j = 1,2. (3.19) 
0<t<tfc-i,|b-/3|<p„ 

For ifc_i < s < tk, Snj(s-,b) = Snj(tk-Ub), pn(s-,b,Zi) = pn(tk-i,b,Zi). The 

following decomposition plays a major role in the proof to extend the result in (3.19) 

onto the interval [tk-i,tk] • 

\/n(dAnj(s, b) — dAj(s, b)) 

= TW~T. Z{~fc ^2Pn(tk-i, b, ZJidNijis) - Xi^ds) 
nbnj{tk-l,b) Vn

 i 

+ HT~f Z^~T 5^(Pn(*fc- l ' b ' Zi) ~ Pn{h-1, Zi))\i:j(s)ds 
- 6 n - j ( t f c _ i , b ) V™ j 

+ T2T7T Z^~fc YJ {Pn(tk-i,Zi)\j(8)ds - S°(s)aj{s)ds) 
-bnj{tk-i,b)Vn

 i 

^S^(s)aj(s)ds _ ^JS^(s)aj{s)ds 

iSnj(tk.ub) hj(s,b) 

Combining the fact that the derivative of -Snj(tk-i,b) with regard to Anj(tk-i,b) 

is Op(n
2a) with the induction assumption (3.19), it follows that 

-Snj(tk-i,b) = hj(tk-i,b) + op(l). (3.21) 

The first term in (3.20) is obviously Op{\). The second term can be further 
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decomposed into 

T ~ — 7T~r= 'YL^nih-i, b, Zt) - pn(tfc_i, b, Zi))Xij(s)ds 

-bnjitk-ub) Vn i 
+ (S,(tfc_i,b,Z i) -&(«*_!,0,Zi))Atf(s)ds. (3.22) 

The derivative of p„ is rea if and only if 1 — Fi(£, b, Z$) — F2(i, b, Z^) is between 

( c+ l )n" a and cn~a, hence ^ ^ ( ^ f c - i . b . Z O / ^ ^ - i . b ) = Op(l). By first order 

Taylor expansion, together with the induction assumption (3.19) and condition (3.15), 

the second term is Op(l). By condition (3.18), the third term in (3.20) is also Op(l). 

By first order Taylor expansion, the fourth term in (3.20) is equivalent to 

yjnqj{s)a,j{s)ds f\ 

^(**-i ,b) U 
y/nqj(s)a,j(s)ds (\ 

(^Snj(tk-Ub) - hj(s,b)\ (3.23) 

- - 1 g 2 V T j ( 5 u t (^nj(tk-l, b ) - hj(tk^, b ) + hjfa-ub) - hi(s, b)) . 

It is easy to show that the derivatives of ^Snj(tk-i,b) with regard to At, I = 1,2 

devided by ^S^.(tfc_i,b) are Op(l) . Together with the induction assumption (3.19) 

and condition (3.17), it follows that the above term is 0P(1). Thus we have shown that 

all the terms in the decomposition (3.20) are Op(l), which completes the proof. • 

Replacing Ani in Unj(b) with Aj, we get the asymptotic equivalent of the score 

functions: 

Unj(b) = V / »)iAB(t,b)(dWtf(t)-dAy(*,b)) 

+ J2 I &*.»(*> b)(dNij,(t) - dhij.(t, b)), (3.24) 
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where ___ _ 
d^. ,th) = Yj(t)(l - Fnj(t, b, Zt)) expJjZTbAdAjjt, b) 2 

l - F n l ( * > b , Z i ) - F B 2 ( « , b ) Z O 

na,n(t, b) = p„(£, b, Zi) (Zi - Zi f3ty(ZTbj)Aj(t, b) 

| (1 - Fnj(t,b,Zt))expjZTb^ZiAjjt,b)\ 

l - F n l ( t , b , Z i ) - F f d ( t ) b , Z i ) / ' 

T ^ b ) = Pn(t, b, Z.)(l - F^-(t, b, Zj)) exp(Zfb^ZjAjjt, b) 

1 - Fnl(t, b, Z<) - Fn2(t, b,Zi) 

Theorem 3.1. Under assumptions A1-A4, for a < 1/6 and pn defined in (3.15), 

sup \Unj(b) - Unj(b)\ = op(n), i = l,2 (3.28) 
|b-/3|<p„ 

Proof. It follows from Lemma 3.1 and the fact that the derivatives of Unj(b) with 

regard to Aj(t, b), j = 1,2,0 < t < r are 0(n 3 a + 1 ) . 

D 

It is obvious that A\(t) and Ai(t) satisfy the equations (3.10) and (3.14) when 

b = (3; therefore, Aj(t,@) = Aj(t), Fj(t,@,z) = Fj(t,z), j = 1,2. In what follows, 

when b = (3, the tilde in the notations can be removed and they are equal to the 

corresponding quantities evaluated at the true parameters. 

Unj ((3) can be written as a sum of local square integrable martingales: 

Unjifl) = Y\ / %(*)dMy(*) + Zl / MWMiA*)' (3-29) 
i JO A JO 
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where 

(3.30) 

, M _ Pn(t, ZJZjjl - Fj(t, Zj)) expjZT^Ajjt) 
M t ) ~ l-F&ZJ-F&Zi) ' ( 3"3 1 ) 

dMij(t) = dNij(t) - Xij(t)dt 

Yi(t)(l - F1(t,Zi))eXp(ZTpj)gj(t) 
Aij{t) l-F^ZJ-FfaZi) 

Theorem 3.2. Under assumptions A1-A4, for a < 1/6, /3nj,j = 1,2 are consistent. 

Proof. The consistency of /3nj follows from Theorem 3.1 and the fact that E(Unj((3)) = 

0. • 

3.2 Asymptotic Linearity of Un(h) 

Under assumption A5, Aj,j = 1,2 are also differentiable in b. The derivatives are 

defined as the solution to the following ordinary differential equations: 

^ M l M = f SUs)aj(S)ds-?-( ~ 1 „ V j = l,2. (3.32) 

We are interested in the derivatives evaluated at the true parameters (3. 

dh(t,b)l _ D ( t u B m ^ + 0 m W ) ,, „> 
—^~lb=/3 - D&) + R&) dbl + W*) dbl > ( 3 - 3 3 ) 
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—Q^\b=(3 ~ W) + <M«) ^ + /fe(0 ^ , (3-34) 

where Dj, Ej,j = 1,2 are p x 1 vectors, i?j, Qj,j = 1,2 are real valued functions. 

They are defined as 

n ,., dhj(t,b,Al(t,(3),A2(t,p)){ 

Ej{t) = db~, 1 /̂9 

36, 

0fy(i,b,Ai(i,/3), 
dbj, 

dhj(t,b,Ai(t,p), 

dAj 

dhj(t,b,Ai(t,P), 

Mt,P)) 

Mt,P)) 

M*,P)) 

m=„.„.,-, " - " l b - / 3 

Plugging (3.33) and (3.34) into (3.32), we have 

Jt~dbV~~~W) [ l{) Rl{)~~dbT~ + Ql{)~~dbT~ 

ddA2(t,P) a2(t) dAyfrp) dA2(t,p)\ 
dl~~dbV~ ~ ~sm [2{t) + Q2{t)~dbT~ + R2{t)~dbT) • 

A similar system of equations exist for the derivatives of A with regard to b2. 

di—db2—
=~sm{l()+Ri{t)~db2—

+Qi{t)—db2—' 
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ddA2(t,P) a2(t) dAx{t,0) dA2(t,P)\ 

Jt—dbT = "sW) \ 2 { ) Q2{t)~db2—
 + m)~db2—) • 

These ordinary differential equations can be solved numerically with initial values 

dAj(0,l3) dbt 
= 0, j,l = 1,2. 

Un(b), which is a smooth function of b and Aj, j = 1,2, is also differentiable in 

b. Its derivatives can be readily obtained once the derivatives of A with regard to b 

are known. 

Theorem 3.3. Under assumptions A1-A6, for a < 1/6, 

lim ^ — = lim ^ — , in probability. (3.35) 
n->oo n OO n-*oo n UU 

Denote the matrix on the right hand side by E, 

( 1 dUnl(/3) 1 dUnl(0) 
n db, n db2 | , 3 3 g ) 

n dbi n dbi 

Proof. It follows directly from Theorem 3.1. • 

3.3 Asymptotic Normality of Un(/3) 

Assume the following limits exist in probability, j , k = 1,2, 
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' n-.oo n ̂  1 - i*i(i, Zj) - F2(t, Zi) 

S*(t) - lim i V , . m , . ( t f M h ^ M M M (339) 

*V (*)- |^n2.^W«(<) i-Fl(t,Zi)-F2{t,Zi) ' (3-40) 

J ^ » n Y 1 —-M*, ̂ ») - ^2(*, Zi) 

sr»(t) = Um i E * , ( « w ) r > i ( ! ) ( 1 ; g ( ^ a ) ) ^ f t ) - <3-42> 
J » ^ « > n ^ 1 - i*i(r, A ) - b2(t, Zi) 

Kiim = JL( *-F,M) 
dAj \l-Fl(t,Zi)-F2(t,Zi) 

(l-FjfrZtfexpWPj) (l-F j(f,Z,))2exp(Zf/3 j) 
1 - Fi(t, Zi) - F2(t, Zi) + (1 - Ftf, Zi) - F2(t, Zi)f' 

dAf \l-F1{t,Zi)-F2(t,Zi)j 

_ (1 - Fjjt, Zj))(l - F2(t, Zj)) exp(ZTPr) 

( l - F ^ Z O - F a ^ Z i ) ) 2 

*/fcj(*) = lim * £ > „ ( * , ^ ( 4 ) expiZfP^Kijkit), (3.43) 

$ ( t ) = lim 1 £ %(*)*(*) e x p ( Z ^ ) ^ f c ( t ) - ^ (t)ny(*), (3-44) 
i 

i%(t) = lim - V ^ ( ^ ( t ) exp(Zf/3 /)^, f c(t) - Sp(*)«v(*)- (3.45) 
J n—>oo fl ' • J 

i 

First we derive the asymptotic equivalent of Anj(t,/3). 
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Lemma 3.2. Under assumptions A1-A4 and A7, for a < 1/6, Define 

An(t) = (v^(Au(*,/3) - At(t)), yfti(An2(t,p) - A2{t)j) , (3.46) 

w-w = (^jf?^^w. ^ j f?w^ w ) ' (3"47) 

du{t)=(»n(t)dMt) ,12(t)dMt)\ ( 3 4 g ) 

^ ^ ( i j d ^ t ) v22{t)dA2{t) J 

An(t) follows the following Volterra equation asymptotically: 

An(t) = Wn( t) - / A„(s-)di/(s) + op(l). (3.49) 
Jo 

7£s unique solution is 

An(t) = f Wn(ds)$(s, t) + op(l), (3.50) 
Jo 

where 

$(s,t) = irM(l-dv). (3.51) 

Proof. The proof is based on the following decomposition: 

Vn(rfA,j(*,^)-^-(0) 

-bnj(t-,P)Vn i 

l-Fnj(t-,p,Zi) 
Pnit-^^^Y^expiZfbj) 

I - Fnl(t-,j3,Zi) - Fn2(t-,/3,Zi) 

l-Fj(t,Zi) 
l-FifrZJ-Ft&Zi) 

dAj(t). (3.52) 

Since the derivatives of pn(t,(3, Zi) with regard to Ank(t,@), k = 1,2 are O(l), by 
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the first-order Taylor expansion and Lemma 3.1, we can replace pn(t—,(3,Zi) with 

pn(t,Zi). Similarly, ^Snj(t—,(3) can be replaced with S°(t), since the derivatives of 

\Snj{t,0) with regard to Ank(t,/3),k = 1,2 are Op(n
2a). 

Hence, replacing ^Snj(t,/3) with Sj(i) and pn(t,j3,Zi) with pn(t,Zi), it follows 

immediately that the first term in (3.52) is equivalent to 

^E^fW)- (3-53) 

By Taylor expansion we have 

r ( l-FnjfafrZj) l-Fj(t,Zj) \ 
n \ l - Fnl(t,/3,Zi) - FrafrfrZi) 1 - Fx{t,Zi) - F2(t,Zi)J 

= ^Km{t){Anl{t) - A^t)) + sfaKij2{t){A\2{t) - A2(t)) + op(l). (3.54) 

The second-order term in the Taylor expansion (3.54) is op(l), since the second-

order derivatives are 0(n3a) and (Anj(i,/3) - Aj(t))2 = O^rT1). By (3.54), the 

second term in (3.52) is asymptotically equivalent to 

g Yl !>«(*> ^)y«(*) exp(^)^fc(*)V^(i4nfc(*-, /3) - Ak(t))dAj(t) 

2 

= ^ ^ ( 0 v ^ ( ^ n * ( « - , i 9 ) - AkitydAjit) + op(l), (3.55) 

where Vkj{t) is defined in (3.43). 

Hence we have shown that An(t) follows the Volterra equation (3.49). By Theorem 

II.6.3 in Andersen et al. (1992), its unique solution is given by (3.50). 

• 

Next we derive the asymptotic equivalent of Unj(f3)/y/n,j = 1,2. 
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Theorem 3.4. Under assumptions A1-A4 and A7, for a < 1/6, 

unmi^ = j ^ E jf (**(*) - P n ( t , | ( f { t ) ) d M ^ 

+ ̂  E I [M*) sf^—) dM^ 
2 

~ E ^ f ^m{Ank{t-,l3)-Ak{t))dAj{t) 
fc=l • / 0 

2 

- E V" /T $W(4 f c( t - /3) - Afc(0)diV(«) + op(l). (3.56) 

Proof. Recall that the score function in (2.14) has two parts. First we derive the 

asymptotic equivalent of the first part J= £ ^ Jo Vij,n(t, f3)(dNij(t)—dAijtn(t, (3)) based 

on the following decomposition: 

"7= E / % > ( * , / 3 ) ( ^ ( * ) - dAiJ!n(t,{3)) - rjiji^dMijit) 
Vn

 i Jo 
1 rr 

=~^J2 / (rfij,n(^P)-Vij(t))dMij(t) 

- vs f - E % A « » l i M M M « A ( i l _ ̂  W) 

l-FnjfaPtZi) 

\-Fnl{t,f3,Zi)~Fn2{t,(3,Zi)j 

F2(t,Zi) 

dAj(t). (3.57) 

By first-order Taylor expansion and Lemma 3.1, it can be shown that r}ij>n(t,f3) 

T]ij(t) = Op(n2a_1 /2), hence the first term in (3.57) is op(l). 
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Furthermore, 

= ^TfiMh'ff+°'{n^l% (3-58) 

thus we can replace the integrand in the second term with Sj3(t). Combining with 

the Volterra equation in (3.49), the second term is asymptotically equivalent to 

- j sE [Pn{t,s«(t){t ]d^(t)+i2^ [ ^(^^(^^-^yMmMt). 
(3.59) 

Using the first-order approximation in (3.54) for the third term and by (3.59), the 

second and the third terms together are asymptotic equivalent to 

- ^ E [ ^^solt)3^^^ ~ E ̂ [ &)(Ank(t-,(3) - Mt))dAj(t). 
(3.60) 

Similar asymptotic equivalence can be derived for the second part in (2.14). • 

To derive the asymptotic variance of -4^Unj(/3), first we should note that Ma and 

Ma are orthogonal for every i. Next, we will show that the first term in (3.56) is 

asymptotically uncorrelated with the third and the fourth terms. For l,k — 1,2, by 

(3.50), 

E 
' 1 r ( p»(t,Zt)Si*(t)\ 

•V£ / £lk(t)(Ank(t-,p) - Ak(t))dMt) 
Jo 
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is asymptotically equivalent to 

=\ ££^WMt)I (%H - Pn{U'^^) **(«.tf-̂ EidM^u)), 
(3.61) 

where $jk(u,t) is the element on the j th row and fcth column in the 2 x 2 matrix 

$(«,<). Since E(dM^(u)) = Xij(u), (3.61) is equal to 

I ZlkWMt)Jo #*(«,*)-£ ^ («) ^ — J ^ . 

It is easy to show that 

lim - y^pn(u, Zjrjijiv^Xijiu) = S]j(u)aj(u), (3.63) 
n—»oo n A—' 

i 

lim - TpKu, ZJXijiu) = S°(u)aj(u). (3.64) 

Hence 
v ^ / , v _ PrJ^Z^S]^\ pn(u,Zi)\i:i{u)du _ 
^[^W so{u) J so{u) 

Therefore (3.62) is 0 and the first term is asymptotically uncorrelated with the other 

terms. Similarly, the second term is asymptotically uncorrelated with the other terms. 

(3.62) 
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By the martingale central limit theorem, we have 

~ J0 \s°(t) (50(f))2 r^dA^ 

dMijit) 

Pn&ZjSpitY 

r (s)P{t) Sp(t)(Sp(t))Ty 

dMij,(t) 

(3.65) 

(3.66) 

Define 

dtj W = ( $ (t)<*4(*) + #x(t)dAf (t) $(t)dAj(t) + $2(t)dAf(t) ) , (3-67) 

to simplify notation, write the last two terms in (3.56) in a matrix form as 

- fTd^(t)Al(t). (3.68) 
Jo 

By (3.50), 

E(Ai(t)An(s)) 

- f [' *(«, t)E(WZ(du)Wn(dv))$(v, s) + op(l) 
JO J0 

/•sAt 

-. / $(u, t)^(W^(d«)Wn(d«))*(ti, a) + op(l) 
JO 

Vo *(M) T ^ i r ( v ) + ^ (3-69) 
^ H 
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The last equality holds by (3.64) and the fact that Mn(t) and Mi2 are orthogonal, 

with compensators \ij{t),j — 1,2 respectively. 

The asymptotic variances of the score functions are 

Vu> = lim Var (-Lunj(/3)) (3.70) 
™^°° V v n J 

pr IT psht ( dAiju) Q \ 

="?+y?+J, I «Ml •(••«) 7 ^ ]•<«.•>«•>. 

^ • ^ - lim Cov f-Lunl(fl), -^=Un2(p)) (3.71) 
n-.oo \y/n y/n J 

rr /gn+'lt) S?(t)(Sfa(t))T r fs™ 
I { s? s?W (5?(*))a 5?(t)<Mi(«) (3.72) 

r /^w _ spmsmr) somA,t) 
+ l { s°2(t) (sut))2 ) s ^ t ) d M { t ) 

pT pT psAt I <JAl(u) Q \ 

Finally we arrive at the asymptotic variance of the score function: 

Theorem 3.5. Under assumptions A1-A4 and A7, for a < 1/6, 

71—»CSO 

•(^=un(p)) = ( yUl 
yUi,u2 

V = J*LVar[^:UM)=l _ yu2 | . (3.74) 
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3.4 Asymptotic Normality of (3n 

Theorem 3.6. Under assumptions A1-A8, for a < 1/6, 

MPn - £) = -TTx^j=Un(fi) + op(l), (3.75) 

where S is defined in (3.36). Furthermore, 

MPn-w^m^vp-y), (3.76) 

with V defined in (3.74). 

Proof. By the Taylor expansion and Theorem 3.2, 

0 = j=Un@n) = -^Un(P) + ItlVjMyffiPn -p) + 0p(l). (3.77) 

(3.75) follows immediately from Theorem 3.3. (3.75) and Theorem 3.5 lead to the 

asymptotic normality of (3n as given in (3.76). D 

3.5 Discussion 

In this subsection we revisit assumptions A2 and A7 and consider when these as­

sumptions hold as well as providing a remedy to situations when they do not hold. 

If Zi,i = 1,. . . , n are i.i.d. with distribution /i, 

5 o ( i ) = E mW-FjfrZtfexpjZTPj) 
l-F^ZJ-FifaZi) 

H i - Fj(t, z)) exp(zTpj)G(t, z)dn(z) (3.78) 



www.manaraa.com

CHAPTER 3. ASYMPTOTIC NORMALITY 38 

is always finite. Similarly, Vkj{t) in (3.43) is also well defined. However, if 1 — 

Fx{t,Z) - F2(t,Z) = 0 with nonzero probability, the limits defined in (3.36)-(3.42) 

and (3.44)-(3.45) do not exist, because for m > 2, 

(Yi{t)(l-Fj(t,Zi))eXp(ZlPj) 
\ (l-F1(t,Zi)-F2(t,Zi))

m 

J (1-Fl(t,z)-F2(t,z))m-1 ^ ' K ' 

is infinite. 

To handle this problem, we redefine %•(£) and <pij(t) by dividing the left-hand side 

of (3.30) and (3.31) by 

at)d=fi + -Y:n Fui\Zi\(i7^ (3-8°) 
n ^ (1 - Fi(t, Zi) - F2{t, Zi))1 

The limits in (3.36)-(3.42) and (3.44)-(3.45) are now well defined. In order for Theo­

rem 3.4 to hold, we only need to divide Unj((3) by £«(£)• Similarly, redefine E and V 

as __ 

n—»oo 

n-»oo nC,n(t) 8b ' 

W)1 V = lim Var (—}—UM 
- •-- \ v n u 

Dividing both sides of (3.77) by Cn(t), we have 

1 -MP)+ stJ^MK-ft + o^l). (3.81) 
y/n(n(t)

 nv nCn(t) db 

Following simiar arguments in Theorem 3.6, the asymptotic normality of (3n given in 

(3.76) still holds. 

If Zi, i = 1 , . . . , n are treated as fixed instead of i.i.d., we would need more compli­

cated conditions as those in Lai and Ying (1991, 1994) and apply the limit theorems 
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in the independent but non-identically distributed case. 

Although we have assumed that the covariates are time independent, the suggested 

iterative maximum likelihood method can be applied to time-varying covariates. The 

cumulative incidence function in (2.1) would be expressed as 

Fj(t, Z) = 1 - exp (- f ei,V{ZT{s)fii)dAi{s)\ , j = 1,2. 

Its derivative with regard to t is 

dF_.(t 7\ 
= (1 - Fj(t, Z)) exp(ZT(t)Pj)dAj(t), j = 1,2. dt 

Without causing any confusion, the argument Zi in Fj(t, Zi) and Fnj(t, b, Zi) repre­

sent the history of Zi up to time t, i.e. {Zi(s), 0 < s < t}. The algorithm and proof 

in Chapter 2 and 3 still go through if Zi is replaced with Zi(t). 
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Chapter 4 

Simulation Studies 

In this chapter, we present the results of simulation studies comparing the iterative 

maximum likelihood method with the methods of Fine and Gray (1999) and Klein 

and Andersen (2005). The iterative maximum likelihood method is implemented in 

Matlab with the optimization routine fminunc, which implements a subspace trust 

region method and is based on the interior-reflective Newton method described in 

Coleman and Li (1994). Fine and Gray's method is implemented with the R package 

cmprsk; Klein and Andersen's method is implemented based on the code in Klein 

et al. (2008). 

We investigate the performance of the three methods in five scenarios. In all five 

scenarios, the cumulative incidence functions are given by 

Fj(t;Z) = 1 - (1 -Pj(l - c- t)) e x p ( z^ ) , j = 1,2. (4.1) 

To simulate a failure time and a failure type from these cumulative incidence func­

tions, we first simulate the failure time T according to the total failure probability 

F(t; Z) = Fi(t; Z) + F2(t; Z). Then with probability dFj(T; Z)/dF(T; Z), the cause 

of failure is the jth cause. 

40 
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Scenario 
I: Moderate Censoring 

II: Heavy Censoring 
III: No censoring 
IV: Large Coef 

V:Censoring Dep. on Z 

Pi 
0.25 
0.2 
0.6 
0.4 
0.38 

Vi 
0.5 
0.4 
0.6 
0.3 

0.56 

A 
l 
l 
l 
-4 
1 

02 
-0.5 
-0.5 
-0.5 

1 
-0.5 

Z 
Bern(0.5) 
Bern(0.5) 
Unif(-l,l) 
Unif(-l,l) 
Bern(0.5) 

LB 
0.045 
0.02 

5 
0.045 

UB 
4 
1 
6 
4 
4 

Censor% 
0.371 
0.746 

0 
0.348 
0.457 

Table 4.1: Model parameters and the average censoring rates in the five scenarios. 

In scenarios I, II and V, the covariate Z follows the Bernoulli distribution with 

a success probability of 1/2; in scenarios III and IV, Z is uniformly distributed on 

the interval (—1,1). In scenarios I, II, III, IV, the censoring times are uniformly dis­

tributed on an interval (LB,UB); in scenario V, the censoring distribution depends 

on the covariate Z. The censoring time is mm(C°,UB), where C° follows the dis­

tribution P(C° < t\Z) — 1 — exp(—^ez). The model parameters and the average 

censoring rates are listed in Table 4.1. 

For each scenario and each sample size of 100, 200 and 500, 1000 parallel simula­

tions are done to calculate the biases, variances, mean square errors of the estimates 

as well as the vector mean square errors \/3 — (3\2. The results are reported in Tables 

4.2-4.4. In this section, ML, FG and PD denote the iterative maximum likelihood 

method, Fine and Gray's method and Klein and Andersen's pseudo-value approach 

respectively. For the iterative maximum likelihood method, a = 0.16, c = 0.1; for 

Klein and Andersen's approach, the independent working covariance matrix is used. 

In scenarios I and II, ML has smaller variances and mean square errors than 

FG and PD. The gain in efficiency of ML over FG and PD is especially obvious for 

sample sizes of 100 and 200. In scenario III, ML has similar variances as FG, both 

smaller than the variances of PD; however, FG has much larger biases than ML. The 

advantage of ML over FG and PD is even clearer in scenario IV, in which ML has 

smaller variances and biases than both FG and PD. 
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n 
Bias 

ML FG PD 
Var(P) 

ML FG PD 
MSE 

ML FG PD 

Scenario I: moderate censoring 

100 

200 

500 

-0.034 0.044 0.058 
0.002 -0.016 -0.020 

-0.037 0.003 0.010 
-0.001 -0.008 -0.014 

-0.015 -0.002 0.001 
0.004 0.002 -0.001 

0.137(0.158) 0.172 0.197 
0.124(0.125) 0.144 0.171 

0.073(0.074) 0.081 0.092 
0.062(0.064) 0.068 0.078 

0.028(0.031) 0.030 0.034 
0.025(0.025) 0.026 0.030 

0.138 0.174 0.200 
0.124 0.145 0.171 
0.262 0.319 0.371 
0.074 0.081 0.092 
0.062 0.068 0.078 
0.136 0.149 0.170 
0.028 0.030 0.034 
0.025 0.026 0.030 
0.054 0.056 0.063 

Scenario II: heavy censoring 

200 

500 

0.043 0.056 0.068 
-0.055 -0.056 -0.072 

0.008 0.010 0.015 
-0.012 -0.013 -0.016 

0.243(0.218) 0.342 0.269 
0.205(0.192) 0.207 0.228 

0.076(0.077) 0.076 0.081 
0.072(0.071) 0.072 0.079 

0.245 0.345 0.274 
0.208 0.210 0.233 
0.410 0.498 0.435 
0.076 0.077 0.081 
0.072 0.072 0.080 
0.147 0.148 0.161 

Table 4.2: Scenario I and II: bias, variance and mean square error of estimates using 
the iterative maximum likelihood method (ML), Fine and Gray's method (FG) and 
Klein and Andersen's method (PD). For each sample size, the first row is the results 
of estimates for fa, the second row is for fa, the third row is the vector mean square 
errors. The number in the bracket on each row is the mean of the estimated variances 
using ML. 
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n 
Bias 

ML FG PD 
Var(f3) 

ML FG PD 
MSE 

ML FG PD 

Scenario III: no censoring 

100 

200 

500 

-0.003 -0.170 0.027 
0.068 -0.173 -0.007 

0.016 -0.170 0.022 
0.022 -0.177 -0.009 

0.017 -0.173 0.008 
-0.001 -0.179 -0.012 

0.067 (0.132) 0.072 0.107 
0.066 (0.079) 0.064 0.089 

0.035(0.035) 0.036 0.052 
0.032(0.030) 0.033 0.043 

0.014(0.015) 0.013 0.019 
0.012(0.012) 0.012 0.017 

0.067 0.100 0.108 
0.071 0.094 0.089 
0.137 0.194 0.197 
0.035 0.065 0.053 
0.033 0.064 0.043 
0.066 0.126 0.095 
0.014 0.043 0.019 
0.012 0.045 0.017 
0.026 0.088 0.037 

Scenario IV: large coefficient 

,100 

200 

500 

0.064 0.352 -0.195 
-0.052 0.295 0.257 

-0.001 0.422 -0.006 
-0.004 0.310 0.187 

-0.017 0.482 0.058 
-0.010 0.292 0.160 

0.353(0.774) 0.451 0.869 
0.228(0.245) 0.171 0.838 

0.173(0.287) 0.225 0.289 
0.106(0.106) 0.083 0.106 

0.059(0.084) 0.072 0.093 
0.037(0.038) 0.029 0.035 

0.357 0.575 0.907 
0.231 0.258 0.904 
0.588 0.833 1.809 
0.173 0.402 0.289 
0.106 0.179 0.141 
0.279 0.581 0.429 
0.059 0.304 0.097 
0.037 0.114 0.060 
0.097 0.418 0.157 

Table 4.3: Scenario III and IV: bias, variance and mean square error of estimates 
using the iterative maximum likelihood method (ML), Fine and Gray's method (FG) 
and Klein and Andersen's method (PD). For each sample size, the first row is the 
results of estimates for /?i, the second row is for /%, the third row is the vector mean 
square errors. The number in the bracket on each row is the mean of the estimated 
variances using ML. 
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n 
Bias 

ML FG PD 
Var(p) 

ML FG PD 
MSE 

ML FG PD 

Scenario V: censoring depending on Z 

100 

200 

500 

0.028 -0.098 0.082 
0.135 -0.232 -0.019 

0.014 -0.125 0.028 
0.094 -0.195 -0.002 

0.006 -0.127 0.015 
0.048 -0.179 0.020 

0.159(0.166) 0.162 0.252 
0.187(0.220) 0.227 0.235 

0.069(0.076) 0.071 0.104 
0.088(0.098) 0.104 0.107 

0.028(0.033) 0.029 0.043 
0.033(0.038) 0.040 0.040 

0.159 0.171 0.259 
0.205 0.281 0.235 
0.364 0.452 0.494 
0.069 0.086 0.105 
0.097 0.142 0.107 
0.165 0.229 0.211 
0.028 0.045 0.043 
0.035 0.071 0.040 
0.063 0.117 0.083 

Table 4.4: Scenario V: bias, variance and mean square error of estimates using the 
iterative maximum likelihood method (ML), Fine and Gray's method (FG) and Klein 
and Andersen's method (PD). For each sample size, the first row is the results of 
estimates for fa, the second row is for fo, the third row is the vector mean square 
errors. The number in the bracket on each row is the mean of the estimated variances 
using ML. 

Scenarios III and IV are different from scenarios I and II in an important aspect. 

If we let Tj = inf{£ : F\(t; Zj) + F2(t; Zj) > 1}, in scenarios I and II, Tj = oo for all i; in 

scenarios III and IV, Tj < oo for some i and r^'s may be different for different subjects. 

For the ith. subject, the proportionality of the cumulative incidence functions (4.1) 

only holds on the interval [0, r,]. For example, in scenario IV, for Z — —0.5, r = 0.99; 

for Z — 1, r = oo. As shown in Figure 4.1, the CIF of the second risk for Z = —0.5 

becomes flat for t > 0.99, while the CIF for Z = 1 is still increasing. 

ML does not use any information beyond r^'s and is still consistent in scenarios 

III and IV. On the contrary, FG assumes the proportionality to hold until the largest 

event or censoring time for all subjects; therefore, it has very large biases in scenarios 

III and IV. PD also suffers the same drawback, but its biases are smaller than FG, 

although larger than ML in scenario IV. FG appears to be more affected by this 

drawback than PD. 
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1 1 1 1 r 
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Figure 4.1: Cumulative incidence functions of the second risk for Z = 1 (black) and 
Z = — 0.5 (red) in scenario IV.. 

In scenario V, we compare the performance of the three methods when the cen­

soring distribution depends on the covariate. In the R package cmprsk, the censoring 

distribution is assumed to be identical for all subjects and is estimated by the Kaplan-

Meier estimate. Hence, it is not surprising that FG has large biases in this scenario. 

Both ML and PD have small biases as neither of them requires estimating the cen­

soring distribution, but ML has smaller variances than PD. 

In summary, ML has better performance, i.e. smaller mean square errors, than 

FG and PD in all the five scenarios investigated. The estimated variances of the 

iterative maximum likelihood method are consistent with the simulated variances in 

all scenarios except scenario IV. In scenario IV, the estimated variance of Pi tends to 

overestimate the true variance. This may be due to the very large absolute value of 

A (A = -4). 
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Chapter 5 

Bone Marrow Transplantation 

Study 

Most patients with leukemia who might benefit from a bone marrow transplant lack an 

HLA-identical sibling donor; hence, there is increasing interest in the use of alternative 

donors. It is important to know the relative efficacy of alternative donor transplants, 

especially when there is a choice between an HLA-mismatched related donor and a 

matched unrelated donor. In this chapter, we compare the outcomes of bone marrow 

transplants for leukemia using different types of donors. In section 1, we describe the 

data in this study and illustrate the difference between the Kaplan-Meier estimate and 

the cumulative incidence function. In section 2, we present the results of regression 

analysis using the iterative maximum likelihood method, Fine and Gray's method and 

the Cox proportional hazards model. Finally in section 3, we use the Nelson-Aalen 

plots to check if the model assumption is valid. 

46 



www.manaraa.com

CHAPTER 5. BONE MARROW TRANSPLANTATION STUDY 47 

5.1 Data 

The data set consists of 415 patients whose transplants were performed at Stanford 

Hospital and Clinics between 1986 and 1997. Among them, 303 transplants are from 

HLA identical sibling donors (SIBL), 87 from HLA-matched unrelated donors (URD), 

25 from partially mismatched related donors (PMRD). 156 patients were treated for 

acute lymphoblastic leukemia (ALL), 130 for acute myelogenous leukemia (AML), 

130 for chronic myelogenous leukemia (CML). Before transplants, 219 patients were 

at an early stage of disease (denned as in the first remission or chronic phase); 197 

were at an advanced stage of disease ( defined as in the second remission, accelerated 

phase, not in remission or in blast phase). The median age of patients at transplant is 

27 years of age. Patients were followed up to five years after transplants; 93 patients 

relapsed and 139 died in remission. 

Since relapse alters the probability of death in remission and death in remission 

precludes the occurrence of relapse, we consider both the occurrence of relapse and 

death in remission as absorbing states. In analysis of such multiple-endpoints data, 

the complement of a Kaplan-Meier estimate (1-KM) is often used to represent the 

probability of occurrence of a specified endpoint. As pointed out in Gooley et al. 

(1999), 1-KM is inappropriate and not interpretable when used in the presence of 

competing risks. 1-KM can only be interpreted as a hypothetical probability that 

assumes the probability of failure from the cause of interest would not change if 

competing risks were removed. In other words, 1-KM yields an unbiased estimate only 

if failure from the cause of interest is independent from failure from other competing 

risks. In other cases, 1-KM usually overestimates the true probability of failure of a 

specified type. 

A more appropriate and interpretable estimate of the probability of failure of a 

specified type is the cumulative incidence function (CIF), which is usually obtained 
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Cumulative Probability of Relapse 

0.
5 

• * - i 

o 

« o 

OJ 

T ~ 

o 

o 
o 

CIF 
1-KM 

1_ , . 
'*' 

i / j r *•-" 

-£?' 
I 

_..' 
j 

*r^~~^ 

if '' 

' • ' 

i 

..----' 

^^- * 

y - H ' — ' " " 

,__,--'""' 

1 

«' 
. 

: 

1 

r 

1 

days 

Figure 5.1: Cumulative probability of relapse after transplants from HLA-identical 
sibling donors. The red curves are 1-KM; the black curves are CIF. The solid lines 
are the estimates; the dashed lines are the 95% pointwise confidence bands. 
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Cumulative Probability of Death In Remission 
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Figure 5.2: Cumulative probability of death in remission after transplants from HLA-
identical sibling donors. The red curves are 1-KM; the black curves are CIF. The solid 
lines are the estimates; the dashed lines are the 95% pointwise confidence bands. 

with the Aalen-Johansen estimate in (1.4). Figures 5.1 and 5.2 show the 1-KM and 

CIF estimates of the probabilities of relapse and death in remission after transplants 

from HLA-identical sibling donors, 1-KM clearly overestimating CIF. 

5.2 Methods and Results 

To assess the effects of donor type on the outcome of the transplants, we compare the 

CIFs of relapse and death in remission stratified by donor type, as shown in Figures 

5.3 and 5.4. Donor type appears to have no significant effect on the risk of relapse, 

as the confidence bands of the CIFs of relapse using different types of donors overlap 
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Figure 5.3: CIF of relapse using identical sibling donors (black), partially mismatched 
related donors (red) and matched unrelated donors (green). The solid lines are the 
estimates, the dashed lines are the 95% pointwise confidence bands. 

with each other. However, the confidence band of the CIF of death in remission using 

identical sibling donors appears to be lower than those using partially mismatched 

related donors or matched unrelated donors, suggesting patients with identical sibling 

donors may have a significantly lower risk of death in remission. 

To control for other covariates, we use regression methods to estimate the effects 

of donor type. Since the relative risks of alternative donors compared with identical 

sibling donors have been found to be different for chronic and acute diseases in Szydlo 

et al. (1997), we consider the interaction of the disease type and the donor type. The 

regression covariates are age at transplant (demeaned), the stage of disease (early or 

advanced) and a categorical variable representing the disease type and the donor type. 
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Cumulative Probability of Death In Remission 
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Figure 5.4: CIF of death in remission using identical sibling donors (black), partially 
mismatched related donors (red) and matched unrelated donors (green). The solid 
lines are the estimates, the dashed lines are the 95% pointwise confidence bands. 
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Donor type 
SIBL 

PMRD 
URD 
SIBL 

PMRD 
URD 

Disease 
Acute 
Acute 
Acute 
CML 
CML 
CML 

Number of patients 
212 
17 
56 
91 
8 
31 

Table 5.1: The number of patients in each subgroup with a specified type of donor 
and disease. Acute stands for ALL or AML; SIBL stands for HLA-identical sib­
ling donor; PMRD stands for partially mismatched related donor; URD stands for 
matched unrelated donor. 

This categorical variable has six levels, a combination of two disease types (acute and 

chronic) and three donor types. The number of patients in each subgroup is shown 

in Table 5.1. 

We estimate the CIFs of relapse and death in remission using the suggested itera­

tive maximum likelihood method and Fine and Gray's method. As a comparison with 

the cause-specific hazards formulation, we also estimate the cause-specific hazards of 

relapse and death in remission using the Cox proportional hazards model. The es­

timated coefficients, their standard errors and p-values are shown in Table 5.2. The 

reference group is acute patients with HLA-identical sibling donors (SIBL-Acute), 

age 26, and at an early stage of disease. 

The subgroup URD-CML has a much lower risk of relapse compared to the refer­

ence group SIBL-Acute. It has 31 patients: 22 died in remission; 9 survived beyond 

five years; none of them relapsed. All three methods give a very large negative re­

gression coefficient; however, except Fine and Gray's method, the other two methods 

have very large estimated standard errors and their p-values of the Wald test are close 

to 1. As Professor Philip Lavori pointed out in a personal email communication, the 

Wald test is not robust for very large coefficients. Instead, the likelihood ratio test 

is more reliable in this case. The p-values for URD-CML by the likelihood ratio test, 
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PMRD URD SIBL PMRD URD Advanced Age 
Acute Acute C M L C M L CML Stage 

Relapse 

PR 

SE 

p- value 

ML 
FG 
Cox 
ML 
FG 
Cox 
ML 
FG 
Cox 

-0.196 
-0.120 
0.326 
0.458 
0.472 
0.475 
0.669 
0.799 
0.493 

0.111 
0.387 
0.628 
0.246 
0.277 
0.265 
0.651 
0.162 
0.018 

-0.457 
-0.438 
-0.544 
0.394 
0.350 
0.364 
0.246 
0.211 
0.134 

-0.342 
-0.357 
0.225 
1.098 
1.017 
1.030 
0.755 
0.726 
0.827 

-33.961 
-9.954 

-17.074 
8.484e+06 

0.262 
2381.688 
0.000* 
0.001* 
0.003* 

0.914 
1.138 
1.295 
0.298 
0.258 
0.268 
0.002 
0.000 
0.000 

-0.003 
0.002 
0.012 
0.007 
0.008 
0.008 
0.606 
0.823 
0.119 

Death in Remission 

(3D 

SE 

p- value 

ML 
FG 
Cox 
ML 
FG 
Cox 
ML 
FG 
Cox 

1.046 
1.063 
1.110 
0.384 
0.347 
0.367 
0.006 
0.002 
0.003 

0.376 
0.719 
0.857 
0.237 
0.283 
0.272 
0.112 
0.011 
0.002 

-0.252 
-0.215 
-0.264 
0.253 
0.245 
0.250 
0.319 
0.380 
0.290 

0.870 
0.878 
0.846 
0.489 
0.492 
0.478 
0.075 
0.074 
0.077 

1.005 
1.076 
1.020 
0.270 
0.272 
0.269 
0.000 
0.000 
0.000 

0.071 
0.120 
0.239 
0.207 
0.201 
0.195 
0.730 
0.550 
0.219 

0.027 
0.031 
0.033 
0.006 
0.006 
0.007 
0.000 
0.000 
0.000 

Table 5.2: Estimated coefficients for relapse (/3R) and death in remission (/3D), their 
standard errors (SE) and p-values using the iterative maximum likelihood method 
(ML), Fine and Gray's method (FG) and the Cox proportional hazards model (Cox). 
The reference group is acute patients with identical sibling donors, age 26, at an early 
stage of disease, p-values with an asterisk are computed by the likelihood ratio test; 
the other p values are computed by the Wald test. 
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given in Table 5.2, are highly significant in all three methods. 

The estimated coefficients and their p-values by the three methods are in general 

consistent except for the subgroup URD-Acute. For relapse, ML and FG give in­

significant p-values, while Cox has a significant p-value. For death in remission, both 

FG and Cox have significant p-values, but ML has a slightly insignificant p-value. 

The reason for this discrepancy needs further investigation. 

To summarize the findings in Table 5.2, patients at an advanced stage of disease 

have a significantly higher risk of relapse compared to those at an early stage of 

disease. Except the subgroup URD-CML, the other subgroups have no significant 

difference in the risk of relapse compared to the reference group SIBL-Acute. Age at 

transplant has no significant effect on the risk of relapse either. 

Older patients have a slightly but significantly higher risk of death in remission 

compared to younger patients. The subgroups URD-CML and PMRD-Acute both 

have a significantly higher risk of death in remission compared to the reference group. 

The subgroups URD-Acute and PMRD-CML have marginally insignificant p-values, 

but this may change if the sample size increases. The stage of disease has no significant 

effect on the risk of death in remission. 

The iterative maximum likelihood method converges after 331 iterations if the 

initial values for the coefficients of all covariates are zero in both models for relapse 

and death in remission. If the starting value is —1 for the subgroup URD-CML in 

the model for relapse, the algorithm will converge after 109 iterations. This suggests 

that a preliminary look at the data and a reasonable guess of the coefficients may 

help the iterative algorithm to converge much faster. 

To see if the results will change for a different choice of the baseline reference 

group, we reanalyze the data using CML patients with identical sibling donors (SIBL-

CML), aged 26 and at an early stage of disease as the reference group. The estimated 

coefficients, their standard errors and p-values are reported in Table 5.3. These results 



www.manaraa.com

CHAPTER 5. BONE MARROW TRANSPLANTATION STUDY 55 

PMRD URD SIBL PMRD URD Advanced Age 
Acute Acute Acute CML CML Stage 

Relapse 

PR 

SE 

p- value 

ML 
FG 
Cox 
ML 
FG 
Cox 
ML 
FG 
Cox 

-0.165 
0.318 
0.870 
0.583 
0.572 
0.588 
0.778 
0.578 
0.139 

0.172 
0.825 
1.172 
0.392 
0.430 
0.434 
0.662 
0.055 
0.007 

0.026 
0.438 
0.544 
0.363 
0.350 
0.364 
0.943 
0.211 
0.134 

-0.122 
0.081 
0.770 
1.117 
1.054 
1.048 
0.913 
0.939 
0.463 

-30.599 
-9.516 
-16.529 

1.681e+06 
0.370 

2381.688 
0.000* 
0.009* 
0.030* 

1.042 
1.138 
1.295 
0.267 
0.258 
0.268 
0.000 
0.000 
0.000 

-0.006 
0.002 
0.012 
0.007 
0.008 
0.008 
0.418 
0.823 
0.119 

Death in Remission 

PD 

SE 

p- value 

ML 
FG 
Cox 
ML 
FG 
Cox 
ML 
FG 
Cox 

1.239 
1.279 
1.374 
0.443 
0.390 
0.419 
0.005 
0.001 
0.001 

0.592 
0.934 
1.122 
0.289 
0.352 
0.342 
0.041 
0.008 
0.001 

0.173 
0.215 
0.264 
0.257 
0.245 
0.250 
0.501 
0.380 
0.290 

1.083 
1.094 
1.110 
0.502 
0.491 
0.486 
0.031 
0.026 
0.022 

1.213 
1.291 
1.284 
0.298 
0.283 
0.296 
0.000 
0.000 
0.000 

0.099 
0.120 
0.239 
0.199 
0.201 
0.195 
0.619 
0.550 
0.219 

0.027 
0.031 
0.033 
0.006 
0.006 
0.007 
0.000 
0.000 
0.000 

Table 5.3: Estimated coefficients, their standard errors (SE) and p-values. The ref­
erence group is CML patients with identical sibling donors, age 26, at an early stage 
of disease, p-values with an asterisk are computed by the likelihood ratio test; the 
other p values are computed by the Wald test. 
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in general agree with those in Table 5.2, except that PMRD-CML has a significantly 

higher risk of death in remission compared to SIBL-CML in all three methods, while 

its relative risk compared to SIBL-Acute is marginally insignificant with p-values 

around 0.07 in all three methods. 

5.3 Model Diagnostic 

The iterative maximum likelihood method and Fine and Gray's method assume a 

proportional hazards model for the cumulative incidence function, as given in (2.1). 

To check if the model assumption is valid, we use the Nelson-Aalen plot, suggested 

in Kay (1977) (also see Andersen et al. 1992, page 555). 

The Nelson-Aalen plot is based on the residual Ty = Ay-(Tj), where Ai:? is the 

cumulative cause-specific hazard 

It is the residual in the sense of Cox and Snell (1968), further discussed by Kay 

(1977). Kay noted that in the uncensored case the true values Tij,i = 1 , . . . ,ra, for 

each j , constitute a sample of n independent unit exponential variables. If some 

of the observations are right censored, one may treat the corresponding residuals as 

right-censored. Kay (1977) suggested using the Nelson-Aalen plot, possibly within 

a number of strata, to check the approximate exponentiality of the residuals. If the 

residuals are truly unit exponentially distributed, the Nelson-Aalen plot should be 

very close to the unit slope. 

The Nelson-Aalen plots of the residuals of relapse and death in remission stratified 

by the stage of disease are displayed in Figures 5.5 and 5.6. Although there is some 

deviation of the Nelson-Aalen plots from the unit slope, the unit slope lies within the 
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Nelson-Aalen plot for relapse 

1.0 

transformed time 

Figure 5.5: Nelson-Aalen plot of the residuals of relapse for patients at an advanced 
stage (green) vs those at an early stage (black). Red line is the unit slope. Dashed 
lines are the 95% pointwise confidence bands. 

95% pointwise confidence bands. This is also true for the Nelson-Aalen plots stratified 

by the other covariates, which are not shown here. Hence, we conclude that there is 

no significant evidence against the proportional hazards model assumption. 
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Nelson-Aalen plot for death In remission 
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Figure 5.6: Nelson-Aalen plot of the residuals of death in remission for patients at an 
advanced stage (green) vs those at an early stage (black). Red line is the unit slope. 
Dashed lines are the 95% pointwise confidence bands. 
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Chapter 6 

Conclusion 

We propose an iterative maximum likelihood method to model the cumulative inci­

dence function directly. It consists of iterating between two steps: the first step is to 

estimate the baseline subdistribution hazards with the Nelson-Aalen-type estimate 

using the current estimate of the regression coefficients; the second step is to update 

the estimate of the coefficients by maximizing the log-likelihood with the baseline haz­

ards fixed. We derive the asymptotic normality of the maximum likelihood estimate 

by representing it as the solution to a system of estimating equations. The iterative 

maximum likelihood estimate has smaller mean square errors than the estimates of 

Fine and Gray (1999) and Klein and Andersen (2005) in the five scenarios investi­

gated by simulation. The proposed method is further illustrated on a real dataset to 

compare the risks of relapse and death in remission after bone marrow transplants 

using different types of donors. 

Simulation studies in the literature have shown that the methods of Scheike and 

Zhang (2008) and Fine (2001) have similar performance as the method of Fine and 

Gray (1999). Combined with our extensive simulation study, the proposed method is 

shown to outperform these other methods. 

The proposed method has three major advantages. First, it can be shown to 
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be asymptotically efficient. Although Fine and Gray's method has similar variances 

on complete data, as shown in scenario III, it has larger variances than our method 

on censored data. Klein and Andersen's method also has larger variances than our 

method in all the scenarios investigated. 

Second, it does not require estimating the censoring distribution. The IPCW-

based methods would be biased if the censoring distribution is misspecified. Although 

Klein and Andersen (2005) avoid estimating the censoring distribution by resorting 

to pseudo-values, their method has to pay a price in efficiency loss, especially for 

moderately censored or complete data. 

Furthermore, the proposed method has a more robust model assumption. Fine 

and Gray's and Klein and Andersen's methods require the model assumptions to hold 

until the largest event or censoring time for all subjects. They are biased in certain 

situations when some subjects fail from either cause with probability 1 before the 

largest event or censoring time; however, the iterative maximum likelihood method 

is still consistent in this case. 

The iterative procedure may sometimes fail to converge for certain initial values, 

but convergence is always guaranteed if the initial values are within a small neighbor­

hood of the true parameters. In case that convergence fails, we suggest trying other 

initial values or starting with a -^-consistent preliminary estimate. 



www.manaraa.com

Part II 

Mortgage Prepayment and Default: 

Modeling and Applications 
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Chapter 7 

Introduction 

7.1 Subprime Crisis 

Many U.S. mortgages issued in recent years were made to subprime borrowers. These 

borrowers usually have a weak credit history, limited income and FICO credit scores 

below 680 on a scale that ranges from 300 to 850. Subprime loans, which have a much 

higher rate of default than prime mortgage loans and carry higher mortgage rates, 

accounted for about 21% of all mortgage originations from 2004 to 2006, up from 9% 

from 1996 through 2004. As of March 2007, the value of U.S. subprime mortgages 

was estimated at $1.3 trillion. 

When U.S. house prices began to decline in mid 2006, mortgage delinquencies 

soared. By October 2007, approximately 16% of subprime adjustable rate mortgages 

(ARM) were either 90-days delinquent or in foreclosure, roughly triple the rate of 

2005. By January 2008, the delinquency rate had risen to 21%, and by May 2008 it 

was 25%. Securities backed by subprime mortgages, widely held by financial firms, 

lost most of their value. This resulted in a large decline in the capital of many banks 

and led to a global credit crunch. 

The causes of this crisis are varied and complex. An important cause was the 
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boom in the housing market before 2006, when low interest rates and large inflows of 

foreign funds created easy credit conditions for a number of years prior to the crisis, 

thus fueling a housing market boom. For example, between 1997 and 2006, the price 

of a typical American house increased by 124%. A major contributor to the increase 

in the overall demand for housing was subprime mortgage lending. The house price 

and credit explosion led to a building boom and eventually to a surplus of unsold 

homes. As a result, U.S. housing prices peaked and began to decline in mid-2006. By 

September 2008, the average U.S. housing prices had declined by over 20% from their 

mid-2006 peak. As of March 2008, 10.8% of all homeowners had negative equity in 

the houses they owned. Consequently, many subprime borrowers of adjustable rate 

mortgages began to default after the rates were reset, because they could not use 

refinancing to escape higher monthly payments. 

Another important cause of the crisis was in the securitization practices, which 

involve the pooling of financial assets, especially those for which there is no liquid 

secondary market, such as mortgages. The pooled assets are transferred to a struc­

tured investment vehicle and serve as collateral for new financial assets issued by the 

vehicle. While in the traditional mortgage model credit risk is retained by the bank 

originating the loan, with securitization, it is transferred to third-party investors. The 

total amount of mortgage-backed securities (MBS) almost tripled to $7.3 trillion be­

tween 1996 and 2007. On one hand, securitization allowed issuers to easily generate 

funding for new loans; on the other hand, it led to weak underwriting standards and 

irresponsible lending as each link in the mortgage chain made a profit while passing 

the associated risk to the next link in the chain. 

A third important cause of the crisis is attributed to the increasingly complex 

and opaque financial products. These finanical products, instead of distributing the 

credit risk, hid the true risk from view. As the noted economist Arnold Kling said at 

congressional hearings on the collapse of Freddie Mac and Fannie Mae in December 
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2008, a highly-risky loan could be "laundered" by Wall Street and return to the 

banking system as a highly-rated security for sale to investors. 

To summarize the causes of the subprime crisis, I quote the following paragraph 

in the Declaration of the Summit on Financial Markets and the World Economy by 

leaders of the G 20 countries dated November 15, 2008 : 

"During a period of strong global growth, growing capital flows, and prolonged 

stability earlier this decade, market participants sought higher yields without an ad­

equate appreciation of the risks and failed to exercise proper due diligence. At the 

same time, weak underwriting standards, unsound risk management practices, in­

creasingly complex and opaque financial products, and consequent excessive leverage 

combined to create vulnerabilities in the system. " 

7.2 Mortgage Valuation Models 

Given the complexity of mortgage-related instruments, quantitative models to valuate 

MBS play a vital role in pricing MBS and assessing their risks. These mortgage 

valuation models have evolved along two related, but still separate, paths. 

The first path views mortgages as long-term bonds issued by borrowers with em­

bedded call (prepayment) and put (default) options. Mortgagors exercise the options 

optimally to minimize the mortgage value and maximize their own wealth. This line 

of research includes the models developed by Dunn and McConnell (1981a,b). In­

dividuals can increase their wealth by defaulting on a mortgage when the market 

value of the mortgage equals or exceeds the value of the house and by prepaying the 

mortgage when the prevailing market rate is below the mortgage contract rate. 

These value-minimizing models, although theoretically attractive, have several 

disadvantages. First, there is apparent suboptimal behavior of borrowers. They are 

not equally astute in exercising the options. Some borrowers do not default when the 



www.manaraa.com

CHAPTER 7. INTRODUCTION 65 

mortgage value exceeds the house value; some do not prepay when the market rate is 

below the contract rate. Secondly, default and prepayment are not purely financial 

decisions. Borrowers face many complex constraints, such as residential immobil­

ity. Another technical drawback of these models is that they are not immediately 

applicable to the analysis of collateralized debt obligation (CDO) tranches. The hier­

archical structure of CDO requires the knowledge of prior mortgage payments, while 

the value-minimizing models are solved by a backward finite difference procedure. 

The second path, pioneered by Schwartz and Torous (1989, 1992), relies upon 

statistical methods to characterize the mortgagor's default and prepayment behavior. 

It is assumed that at each point in time there exist probabilities of prepayment and 

default depending upon the risk-free interest rate, the mortgaged house value and 

certain loan-specific variables. Under assumptions on the dynamics of the risk-free 

interest rate and the mortgaged house value, standard arbitrage arguments give the 

partial differential equation (PDE) satisfied by the value of any MBS. Monte Carlo 

methods can be applied to solve the PDE by simulating the risk-neutral paths of the 

interest rate and the mortgaged house value. The cash flows to the security holders 

are determined given the estimated prepayment and default probabilities, and the 

average of the discounted present value of future cash flows in many realizations gives 

the price of any MBS. 

The price given by the model is often not the same as the observed market price. 

To equate the model price with the market price, a constant spread is added to all the 

risk-neutral spot interest rates in the Monte Carlo simulation. This spread is called 

the option-adjusted spread (OAS), which may be interpreted as the risk premium not 

explained by the risk-free interest rate. A detailed description about the origin and 

interpretation of OAS can be found in Kupiec and Kah (1999). 

The basic ingredients of the second path are the estimated prepayment and default 

probabilities. The next section provides a brief review of methods in the literature to 
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estimate these probabilities. 

7.3 Modeling Prepayment and Default Probabili­

ties 

Mortgage data involve competing risks. There are two end-points, prepayment and 

default, which are mutually exclusive. The occurrence of one end-point precludes that 

of the other. Since mortgage data are usually observed monthly or quarterly, for such 

discrete data with numerous ties, the popular Cox proportional hazards model is not 

immediately applicable. Instead, several parametric methods have been suggested to 

model the hazards. 

Schwartz and Torous (1989) suggested to model the prepayment hazard under the 

proportional hazards assumption and model the baseline hazard with a log-logistic 

function: 

Xo{t) = ITW 
It was implemented using pool-level covariates: the difference between the contract 

rate and long-term Treasury rate, the fraction of the pool outstanding and seasonality. 

Their model is parsimonious, but it imposes restrictions on the shape of the baseline 

hazard. 

Deng et al. (2000) proposed to use a parameter 7^ for each discrete time interval 

tk and model the hazards with the Gumbel link: 

Xj(tk, Z(tk)) = 1 - exp(- exp(7# + faZ(tk) + logfo-))), 3 = 1,2. 

771 and 772 are unobserved heterogeneities associated with the hazard functions for 

default and prepayment respectively. They are distributed on two or three mass 
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points, representing two or three populations among borrowers. All the parameters, 

including 7's, /3 and the distribution of rjj, are estimated by maximizing the full 

likelihood. Although it allows more flexibility in modeling the baseline hazards, their 

method is computationally very expensive for long-duration data. 

Given the inherent discreteness of mortgage data, a more appropriate method is 

the multilogit regression model. In each month the borrower makes a decision out of 

three choices, to continue payment, default or prepay. Let Y(t) be 0, 1, 2 according 

to whether the borrower continues payment, defaults or prepays in month t, and let 

Z(t) denote the vector of covariates in month t. The multilogit model estimates the 

conditional probability of each choice in any given month by 

P{Yit) = j\Y(t - 1) = 0, Z(t)) = ^ + # Z ( ' » , ; = 1,2 

Calhoun and Deng (2002) implemented the multilogit regression model on con­

forming fixed-rate and adjustable-rate residential mortgages between 1979 and 1993. 

Their covariates include loan age, dummy variabls for origination years, the loan-

to-value ratio (LTV), seasonality, occupancy status of the property, the original loan 

size, the ratio of 10-year Constant Maturity Treasury rate to the 1-year Constant Ma­

turity Treasury rate, mortgage premium value and the probability of negative equity 

based on estimated drift and volatility of house prices. Since prepayment and default 

probabilities depend on loan age in a clearly nonlinear way, they include a quadratic 

function of loan age. 

7.4 Outline 

To incorporate possible nonlinear dependency on the covariates and interactions 

among them, especially interactions between loan age and the other covarites, we 



www.manaraa.com

CHAPTER 7. INTRODUCTION 68 

propose to extend the multilogit model to neural networks. In Chapter 8, we de­

scribe the neural network model to estimate the conditional prepayment and default 

probabilities. In Chapter 9, we apply both the multilogit regression model and the 

neural network model to a large subprime mortgage dataset. We predict the monthly 

prepayment and default rates on three test datasets of vintages 2004, 2005 and 2006 

and compare the prediction accuracy of the neural network model with that of the 

multilogit model. In Chapter 10, we summarize the advantages of the neural network 

model over the multilogit model as well as findings from the analysis of the data. 
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Neural Network Model 

In this chapter, we provide a brief description of fitting the neural network model 

and some issues involved based on Hastie et al. (2001, Chapter 11). The most widely 

used "vanilla" neural network, sometimes called the single hidden layer network, is a 

regression or classification model, typically represented by a network diagram as in 

Figure 8.1. It applies both to regression or classification. For J-class classification, 

there are J output units, with the jth unit modeling the probability of class j . We will 

use a single hidden layer network to model the conditional probability of continuing 

payment, default or prepayment. In our case, J = 3. 

The inputs to the network are the covariates Z(t); the hidden neuron Xm is created 

as a function of linear combinations of the inputs. Recall that Yi(t) being 0,1,2 are 

coded for the ith borrower's decision to continue payment, default or prepay in month 

t, the targets are modeled as a function of linear combinations of the X's. 

Xm(t) = a(a0m + ^ ( t ) ) , m = l , . . . , M , 

Rj(t) = p0j + PJX(t), j = 0,...,J-l, 

fj(Z(t)) = P(Y(t) = j\Y(t - 1) = 0,Z(t)) = 9i(R(t)), j = 0,...,J-l, 

69 
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3 

Hidden 
Layers) 

Figure 8.1: Schematic of a single hidden layer, feed-forward neural network. 

where X(t) = (X^t),..., XM(t))T, R(t) = (Ro(t),..., Rj-i(t))J'. The activation 

function a(v) is usually chosen to be the sigmoid a(v) = 1/(1 + e~v) or the Gaussian 

radial basis function. For classification, gj(-) is usually chosen to be the softmax 

function 

E«=o eRl 

which is exactly the transformation used in the multilogit model. If a is linear, the 

entire model collapses to a linear model in the inputs. By introducing the nonlinear 

transformation a, a neural network can be thought of as a nonlinear extension of the 

linear model. 

The complete set of unknown parameters, called weights and denoted by 0, consists 

of 

{a0m,am;m = 1,2,..., M}, 

{p0j,Pj;j = 0,l,...,J-l}, 

with M(p + 1) + J(M + 1) parameters in total. 
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We use cross-entropy as the error function: 

L(9) = -J2f2^gfYi{t)(zm (8.i) 
i = l t= l 

where Tj is the last month of observation for the ith loan. The generic approach 

to minimizing L(9) is by gradient descent, called back-propagation in this setting. 

The gradient can be computed by a forward and backward sweep over the network, 

keeping track only of quantities local to each unit. A detailed description about 

back-propagation can be found in Hastie et al. (2001, page 354). Although back-

propagation is simple and local, it can be very slow and hence is usually not the 

method of choice. Better approaches to fitting include conjugate gradients and vari­

able metric methods, which avoid explicit computation of the second order derivative 

matrix while still providing faster convergence. 

Neural networks are generally overparametrized and will overfit the data at the 

global minimum of L(9). In early developments of neural networks, an early stopping 

rule was used to avoid overfitting. A more explicit method for regularization is weight 

decay, which is analogous to ridge regression for linear models. Hastie et al. (2001, 

page 356) suggested adding a penalty term to the error function 

M0) + 7 ( £ / ^ + £aLJ, 
V jm ml / 

where 7 > 0 is a decay parameter. Larger values of 7 will shrink the weights towards 

zero; typically cross-validation or a validation dataset is used to choose 7. 

The scaling of the inputs determines the effective scaling of the weights in the input 

layer; therefore, it is best to standardize all inputs to have mean zero and standard 

deviation one. This ensures all inputs are treated equally in the regularization process. 

Generally, it is better to have too many hidden units than too few. With too few 
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hidden units, the model might not have enough flexibility to capture the nonlinearities 

in the data; with too many hidden units, the weights can be shrunk toward zero with 

appropriate regularization. As stated in Hastie et al. (2001, page 358), it is most 

common to use a reasonably large number of units and train them with regularization. 

Typically the number of hidden units is in the range of 5 to 100, the number increasing 

with the number of inputs and the number of training cases. 

Since the error function L(9) is nonconvex with many local minima, the final 

solution is quite dependent on the choice of starting weights. One could try a number 

of randomly generated starting configurations, and choose the solution with the lowest 

error. A better approach is to use the average predictions over the collection of 

networks as the final prediction (Ripley 1996; Hastie et al. 2001). With standardized 

inputs, the starting weights are typically in the range [—0.7,0.7]. 
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Chapter 9 

Empirical Analysis 

In this chapter, we apply both the neural network model and the multilogit model 

to a large subprime mortgage dataset. In section 1, we describe the data and the 

covariates used in the two regression models. In section 2, we interpret the effects of 

these covariates. In section 3, we use the two models to predict monthly prepayment 

and default rates on four test datasets and compare their prediction accuracy. 

9.1 Data 

The empirical analysis is based upon loan-level mortgage data consisting of 130,000 

first-lien 2-28 adjustable rate subprime loans originated between 2004 and 2006, which 

were randomly chosen from the database maintained by LoanPerformance 1. These 

loans have initial mortgage rates for the first two years, then the rates are reset 

according to some index, such as 1-year LIBOR, plus a margin. They usually have 

prepayment penalty for the first two years. For each loan, the available information 

includes the year and month of origination and termination ( if it has been closed), 

1 LoanPerformance is a self-standing division of First American CoreLogic, Inc.; it creats and 
maintains the industry's largest mortgage securities and servicing databases. 

73 
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Loan Purpose 

Income Documentation 

Occupancy Status 

Purchase Refinance 
44.1% 55.9% 
Pull Limited or No 

66.5% 33.5% 
Owner Investor 
89.7% 10.3% 

Table 9.1: The distributions of the categorical covariates in the data. 

Covariate 
FICO 

combined LTV (%) 
loan size(thousand) 

initial mortgage rate(%) 

5% 
517 
62 
57 

6.000 

25% 
563 
80 
92 

6.990 

50% 
603 
90 

131.92 
7.875 

75% 
641 
99 

195.20 
8.800 

95% 
703 
100 

355.23 
10.250 

Table 9.2: The quantiles of FICO, LTV, loan size and initial mortgage rate in the 
data. 

indicator of prepayment or default. The loan-specific covariates include the borrower's 

credit score FICO when the loan was originated, the combined loan-to-value ratio 

(LTV), the original loan amount (loan size) and the initial mortgage rate. Also 

available are three categorical covariates: loan purpose, representing whether the 

loan is for purchase or refinance; income documentation, representing whether the 

borrower has full or no documentation of income; occupancy status, representing 

whether the mortgaged home is owner occupied or for investment. Tables 9.2 and 9.1 

show the distributions of the continuous and categorical covariates in the data. 

Besides these loan-specific covariates, two macro-economic variables are also in­

cluded, the Federal Housing Finance Agency (FHFA) MSA House Price Index (HPI)2 

and 1-year Constant Maturity Treasury rate (CMT). Figure 9.1 shows the average 

HPI in the data from 2004 to 2007. House prices increased dramatically from 2004 to 

2006, peaked in mid-2006 and started to decline in 2007. Figure 9.2 shows the 1-year 

2HPI is a weighted, repeat-sales index, measuring the average price changes in repeat sales or 
refinancings on the same properties. 
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House Price Index(HPI) 

— i 1 i 1 1 1 1 1 
2004/01 2004/06 2005/01 2005/06 2006/01 2006/06 2007/01 2007/06 

Figure 9.1: Average HPI 2004-2007. 

CMT rate for the same period. 

These two macro-economic variables do not directly enter into the regression 

model. Instead they are transformed into the mortgage premium value (MP) and 

the equity position(EQ), as suggested in Calhoun and Deng (2002). The call (pre­

payment) option value of the mortgage is a function of the difference between the 

present value of the anticipated future stream of mortgage payments discounted at 

the current market rate, and the present value of the mortgage discounted at the 

current contract rate. Deng et al. (1996) suggested approximating the call option 

value using the relative spread between the current mortgage contract rate and the 

prevailing market rate. As the prevailing market rate is not available in the data and 

is highly correlated with the risk-free interest rate, we use 1-year CMT rate to proxy 
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1-year Constant Maturity Treasury Rate(CMT) 

2004/01 2004/06 2005/01 2005/06 2006/01 2006/06 2007/01 2007/06 

Figure 9.2: 1-year CMT rate 2004-2007. 

the prevailing market rate and approximate the mortgage premium value by 

prevailing mortgage rate 
mortgage contract rate 

CMT 
sa 1 . 

mortgage contract rate 

A similar approximation can be found in Schwartz and Torous (1989), where long-

term Treasury rates are used to proxy refinancing rates. 

The equity position of the borrower is determined by the difference between the 

market value of the property securing the loan and the unpaid mortgage balance. 

Since periodic observations on the values of individual properties are not available, 

we use the original loan size divided by the loan-to-value ratio and multiplied by the 
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appreciation in HPI to approximate a property's market value: 

current market value of property 
unpaid balance 

HPI(t)/HPI(0) x loan size/LTV 
unpaid balance 

We implement both the multilogit model and the neural network model, with 

covariates including loan age, loan size, FICO, mortgage premium value, equity posi­

tion, loan purpose, income documentation and occupancy status. The training sample 

consists of 30,000 loans originated from the beginning of 2004 to the end of 2005 and 

observed until April 2006. For the multilogit model, we include a natural cubic spline 

in loan age with knots at 10 and 20 months to capture nonlinear dependency on loan 

age. Other placements of the knots do not affect the results significantly. Unlike fit­

ting the neural network model, the likelihood in the multilogit model is not penalized, 

since the multilogit model has much fewer parameters than the neural network model 

and does not tend to overfit the data. 

In the neural network model, all the continuous covariates, including loan age, 

are standardized before they are entered into the model. Two parameters need to 

be chosen, the number of hidden neurons and the decay parameter 7. Following 

the common practice described in Chapter 8, we put down 20 hidden neurons to 

allow for enough flexibility and use an independent validation dataset of 5889 loans 

to choose the optimal decay parameter. The neural network model is trained with 

six randomly generated starting configurations of the weights; the log-likelihoods of 

the six networks on the validatation dataset are computed and shown in Figure 9.3. 

7 = 0.15 gives consistently higher log-likelihoods than the other values of 7 in the 

range from 0.03 to 0.18; hence it is chosen as the optimal decay parameter. The 

average of the predictions from the six networks is used as the final prediction. Both 

the multilogit model and the neural network model are implemented with the R 
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Figure 9.3: Boxplots of the log-likelihoods on the validation dataset for different 
values of the decay parameter 7 from 0.03 to 0.18. 
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Covariate 

purpose:refinance 
document:no doc 

occupancy:investor 
loan size 

FICO 
mortgage premium 

equity position 

Default 
Coefficient 

-0.303 
0.432 
0.778 
0.066 
-0.605 
0.112 
-0.610 

SE 
0.060 
0.060 
0.084 
0.031 
0.036 
0.038 
0.051 

p Value 
0.000 
0.000 
0.000 
0.031 
0.000 
0.003 
0.000 

Prepayment 
Coefficient 

0.199 
0.105 
0.024 
0.271 
-0.009 
0.140 
0.148 

SE 
0.029 
0.028 
0.046 
0.010 
0.015 
0.017 
0.009 

p Value 
0.000 
0.000 
0.606 
0.000 
0.521 
0.000 
0.000 

Table 9.3: Estimated coefficients and their standard errors and p-values using the 
multilogit model. The references for the first three categorical covariates are pur­
chase, full documentation of income and owner occupancy, respectively. The last four 
continuous covariates are standardized. 

package nnet. 

9.2 Covariate Effects 

Table 9.3 reports the estimated coefficients, their standard errors and p-values in the 

multilogit regression model. Since loan age is included in the multilogit model in 

terms of a natural cubic spline, its effects on default and prepayment probabilities 

are displayed in Figure 9.4. As a comparison, the effects of the covariates in the 

neural network model are displayed in Figures 9.5-9.11. 

In both models, the equity position has a positive effect on prepayment probability 

and a negative effect on default probability, which is consistent with the option theory 

of value-minimizing mortgage models. The mortgage premium value has positive 

effects on both prepayment and default probabilities. Its positive effect on default 

probability may be a little surprising, but it is consistent with the findings in Deng 

et al. (2000). They pointed out that a borrower may default as a means of prepayment 

when the interest rate is low enough. Furthermore, Figure 9.7 shows that the effects 

of the mortgage premium value on prepayment and default probabilities are nonlinear 
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Monthly Default Probability 

Monthly Prepayment Probability 

Figure 9.4: Effects of loan age on default (top) and prepayment (bottom) probabil­
ities in the multilogit model. The other continuous covariates are at their sample 
means, the categorical covariates are purchase, full documentation of income and 
owner occupancy, respectively. The dashed lines are the 95% pointwise confidence 
bands. 
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Effect of FICO on default probability 

Effect of FICO on prepayment probability 

Figure 9.5: Effects of FICO on default (top) and prepayment (bottom) probabilities. 
The other continuous covariates are at their sample means, the categorical covariates 
are purchase, full documentation of income and owner occupancy, respectively. 
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Effect of loan size on default probability 

Effect of loan size on prepayment probability 

Figure 9.6: Effects of the loan size on default (top) and prepayment (bottom) prob­
abilities. The other continuous covariates are at their sample means, the categorical 
covariates are purchase, full documentation of income and owner occupancy, respec­
tively. 
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Effect of mortgage premium on default probability 

Effect of mortgage premium on prepayment probability 

Figure 9.7: Effects of the mortgage premium value on default (top) and prepayment 
(bottom) probabilities. The other continuous covariates are at their sample means, 
the categorical covariates are purchase, full documentation of income and owner oc­
cupancy, respectively. 
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Effect of equity position on default probability 

Effect of equity position on prepayment probability 

Figure 9.8: Effects of the equity position on default (top) and prepayment (bottom) 
probabilities. The other continuous covariates are at their sample means, the cate­
gorical covariates are purchase, full documentation of income and owner occupancy, 
respectively. 
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Effect of loan purpose on default probability 

purchase 
refinance 

15 

nage 

Effect of loan purpose on prepayment probability 

purchase 
refinance 

15 

loan age 

Figure 9.9: Effects of loan purpose on default (top) and prepayment (bottom) prob­
abilities. The continuous covariates are at their sample means, the other categorical 
covariates are full documentation of income and owner occupancy. 



www.manaraa.com

CHAPTER 9. EMPIRICAL ANALYSIS 86 

Effect of income documentation on default probability 

full document 
low or no document ^ ^ 

^ — ~ - ^ ^ ^ ^ 

Effect of income documentation on prepayment probability 

full document 
low or no document 

25 

Figure 9.10: Effects of income documentation on default (top) and prepayment (bot­
tom) probabilities. The continuous covariates are at their sample means, the other 
categorical covariates are purchase and owner occupancy. 
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Effect of occupancy status on default probability 

owner 
investor 

f I 

15 

loan age 

Effect of occupancy status on prepayment probability 

owner 
investor 

20 15 

loan age 

Figure 9.11: Effects of occupancy status on default (top) and prepayment (bottom) 
probabilities. The continuous covariates are at their sample means, the other cate­
gorical covariates are purchase and full documentation of income. 
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and interact with loan age. 

Although the effects of the covariates in the multilogit model and the neural net­

work model are in general consistent, there are a few differences. For example, FICO 

has a negative effect on default probability in both models; its effect on prepayment 

probability is insignificant in the multilogit model, but positive in the neural network 

model. In the multilogit model, loans for refinance have a lower probability of default 

and a higher probability of prepayment than loans for purchase. In the neural network 

model, loan purpose appears to have no significant effect on default probability; its 

effect on prepayment probability changes with loan age. Compared with purchase, re­

finance increases the conditional prepayment probability for the first 14 months after 

origination and then decreases the probability. The effects of income documentation 

and occupancy status on prepayment probability in the neural network model also 

change with loan age in a very similar way. 

9.3 Predicting Prepayment and Default Rates 

In this section we use the multilogit model and the neural network model to predict 

the fraction of the outstanding loans in a pool prepaid or defaulted on in a given month 

(hereafter called prepayment or default rate). Let Si(k) denote the probability that 

the zth loan is still current at the end of month k ; Di (k) denote the probability that 

the zth loan will default by the end of month A; conditioned on that it is current at 

the end of month k — 1 ; Pi(k) denote the probability that the iih loan will prepay 

by the end of month k conditioned on that it is current at the end of month k — 1. 

Di(k) and Pi(k) can be estimated directly from the models, given the loan-specific 

covariates, 1-year CMT rate and HPI at month k. Si(k) can be computed by induction 
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assuming that 5j(l) = 1 for alH: 

Si(k) = Si(k - 1)(1 - Di{k) - Pi(k)). (9.1) 

For a pool of n loans, the estimated default rate at month A; is 

Bik) = n=i^-w) (9 2) 

Similarly, the estimated prepayment rate at month k is 

Note that there are two time scales involved; one is the calender time, the other 

is the loan age. These two time scales are related by the origination time of the loan, 

with the loan age being the difference between the calender time and the origination 

time. We first look at the monthly prepayment and default rates when all the loans 

are aligned by loan age. The test dataset for this purpose consists of all the loans 

originated in 2004, excluding those used in the training data. Figure 9.12 displays 

the actual and the predicted prepayment and default rates of this test dataset. After 

24 months of age, the prepayment rates increase dramatically; the default rates also 

increase, but less dramatically. This is likely due to the reset of mortgage rates and 

release from prepayment penalty after two years. Table 9.4, which tabulates the L\ 

errors of the two models, shows that the neural network model has a smaller L\ error 

compared to the multilogit model. 

To predict prepayment and default rates in a given calender month, we design 

three test datasets, consisting of loans originated in the first half of 2004, 2005, and 

2006, respectively. Each pool has about 16,000 loans, none of which are used in 

the training data. For each pool, we predict the monthly prepayment and default 
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Monthly Default Probability 

0 5 10 15 20 25 

loan age 

Monthly Prepayment Probability 

i 1 1 1 1 r 
0 5 10 15 20 25 

loan age 

Figure 9.12: Actual vs predicted monthly default (top) and prepayment (bottom) 
rates of loans aligned by loan age: actual rates (black), predicted rates by the neural 
network model (red), predicted rates by the multilogit model (green). 
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Monthly Default Rates 

actural 
estimated NN 
estimated multilogit 

2005/06 2005/12 

calender month 

Monthly Prepayment Rates 

actural 
estimated NN 
estimated multilogit 

S 

2005/06 2005/12 

calender month 

Figure 9.13: Actual vs predicted monthly default (top) and prepayment (bottom) 
rates on the three test datasets of vintages 2004, 2005 and 2006, respectively: the 
actual rates (black), the predicted rates by the neural network model (red) and the 
predicted rates by the multilogit model (green). 
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Model 
multilogit 

neural network 

Prepayment 
0.00612 
0.00295 

Default 
0.00122 
0.00060 

Table 9.4: L\ errors of the predicted monthly prepayment and default rates using 
the multilogit model and the neural network model on the same test dataset used in 
Figure 9.12. 

Vintage 

2004 
2005 
2006 

Prepayment 
neural network multilogit 

0.00271 0.00172 
0.00142 0.00336 
0.00246 0.00577 

Default 
neural network multilogit 

0.00061 0.00080 
0.00063 0.00086 
0.00119 0.00263 

Table 9.5: L\ errors of the predicted monthly prepayment and default rates on the 
three test datasets using the multilogit model and the neural network model. 

rates for 12 months, the results of which are shown in Figure 9.13. The L\ errors 

of the predictions are tabulated in Table 9.5. The neural network model has smaller 

Li errors than the multilogit model in all the comparisons except for predicting the 

prepayment rates of the pool originated in 2004. 

It is worth noting that loans in the third pool, which originated in 2006, have dif­

ferent underwriting standards from those in the training data, which originated from 

2004 to 2005 and were observed until April 2006. During the period of observation 

for the training data, the house prices were increasing; however, the prediction of 

the prepayment and default rates of the third pool is from June 2006 to May 2007, 

a period during which house prices began to decline. It is not surprising that the 

third pool has higher default rates than the pools originated in 2004 and 2005 and 

lower prepayment rates than the pool originated in 2004. Of special interest is that 

the neural network model can predict the prepayment and default rates of the third 

pool quite accurately under a very different macro-economic situation from that of 

the training data. 
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Figure 9.14: Boxplots of log-likelihoods on the 14 test datasets using the multilogit 
model (left) and the neural network model (right). 

To further compare the out-of-sample fitting of the neural network model and the 

multilogit model, we split all the loans except those in the training data into 14 test 

datasets and compare the log-likelihoods of the two models on these test datasets. 

As shown by the boxplots in Figure 9.14, the neural network model has consistently 

higher log-likelihoods than the multilogit model, providing evidence that the neural 

network model fits the test datasets better than the multilogit model. 
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Chapter 10 

Conclusion 

We proposed a neural network model as an alternative to the multilogit regression 

model to estimate the conditional monthly prepayment and default probabilities. 

Both the multilogit model and the neural network model were applied to a large 2-28 

adjustable rate subprime mortgage dataset originated from 2004 to 2006. The neural 

network model shows that the effects of the mortgage premium value on prepayment 

and default probabilities are nonlinear and interact with loan age. The effects of loan 

purpose, income documentation and occupancy status also change with loan age. 

We used the neural network model and the multilogit model to predict the monthly 

prepayment and default rates on four pools of loans. The neural network model has 

smaller Li errors than the multilogit model. The conditional prepayment probability 

increases dramatically after 24 months since origination due to reset of mortgage 

rates and release from prepayment penalty. The pool originated in 2006 has higher 

default rates and lower prepayment rates compared to the pool originated in 2004. 

The neural network model can predict quite accurately the prepayment and default 

rates of the third pool under a situation of house price depreciation, although the 

model is trained over a period of house price appreciation. 

Both the neural network model and the multilogit model estimate the hazards of 
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prepayment and default. We chose to estimate the hazards instead of the cumulative 

incidence functions, because the duration of the data is relatively short and in practice 

one is often interested in projecting the prepayment and default rates one or two 

months ahead. If the question to be addressed is how many loans will default or be 

prepaid within a given number of years, the methods in Part I of this thesis, which 

directly model the cumulative incidence functions, can also be applied. 

The effects of the state of the economy on default and prepayment probabilities 

are characterized by two variables, the risk-free interest rate and the House Price 

Index (HPI). Although the risk-free interest rate and the HPI have major impacts 

on default and prepayment behavior, it is reasonable to assume that there are other 

influences of the state of the economy beyond these two variables. Future work will 

include modeling with time series methods the influence of the state of the economy 

unexplained by the interest rate and the HPI. 
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